
Smartphones vs. Laptops: Comparing Web Browsing
Behavior and the Implications for Caching

Ioannis Papapanagiotou
Electrical & Computer

Engineering
NC State University

Raleigh, NC
ipapapa@ncsu.edu

Erich Nahum
IBM TJ Watson Research

Center
Hawthorne, NY

nahum@us.ibm.com

Vasileios Pappas
IBM TJ Watson Research

Center
Hawthorne, NY

vpappas@us.ibm.com

ABSTRACT
As more and more users access the web through mobile de-
vices, traffic patterns for these devices need to be better un-
derstood. Characterizing their traffic is of primary impor-
tance both to wireless network carriers and to corporate net-
work administrators, as they prepare their networks for the
explosive growth of smartphones and tablets.

In this paper, we have collected and analyzed the wireless
data traffic of a large corporate network, of around 2200 lap-
tops and 400 smartphones. Using this data set, we devise
a methodology to distinguish different types of wireless de-
vices (smartphone vs laptops) as well as operating system
instances (iOS, Android, BlackBerry etc.). We analyze the
mobile web traffic behavior and identify the similarities and
differences across the most common mobile platforms. For
example, we observe that streaming content to iOS devices is
different compared to other Operating Systems. That is be-
cause iOS devices have a media component that handles the
downloaded traffic, and it has some unique properties, such
as requesting objects with a specific size. We also observe
that laptop devices have more intelligent browser caching
capabilities.

Hence, we investigate the impact of a browser cache in all
devices. We determine that a 10MB browser cache which
is able to handle partial downloads, in smartphones would
be enough to handle the majority of the savings. Finally,
we showcase that caching policies need to be amended to
attain the maximum possible savings in proxy caches. Based
on those optimizations the emulated proxy cache provides
10%− 20% in bandwidth savings.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network Management

General Terms
Measurements, Design

Keywords
Measurements, Mobile Traffic, Network Usage

1. INTRODUCTION
As smartphones reach the 1 billion threshold, they are

already contributing more than 10% of Internet traffic
[10]. Recently a number of studies have been conducted
on smartphone usage [17, 19, 25, 22]. Yet many as-
pects of smartphone traffic behavior are still not well
understood. Their behavior may have implications for
network design and provisioning, particularly if their
traffic is significantly different from other devices, such
as PCs.
This paper exposes some of those differences by com-

paring the Web browsing behavior of smartphones with
a control group, namely laptops. We do this by cap-
turing a full-packet trace in a wireless enterprise envi-
ronment, composed of the traffic from over 3000 unique
devices over 3 weeks. We use this trace to evaluate the
Web browsing behavior of the devices, as that makes
up the bulk of the traffic. We examine standard metrics
such as object size, popularity, and content type. We
focus mainly on those areas where the traffic of the two
device categories differ. In particular, we focus on is-
sues related to video and how it is delivered over HTTP,
via progressive downloads with range requests. We also
examine the effectiveness of caching in detail, both at
the browser and at a proxy.
We summarize our contributions as follows:

• Device Identification: We show that earlier ap-
proaches to device identification which rely on the
User-Agent header are insufficient. We introduce
a data-mining technique based on DHCP informa-
tion. Our approach identifies 98.5% of the devices
in the network, as compared to 84% for earlier ap-
proaches.

• Web Traffic across Devices: We examine Web
traffic across both smartphones (iOS, Android, Black-
Berry) and laptops (Windows and Mac OS X).
We show that smartphones make less use of con-
ditional GET requests, and that iOS users con-
sume more video in terms of bytes. We highlight
the significance of partial downloads, showing that

1

larger transfers are more likely to be aborted, par-
ticularly if the content is streaming video.

• Browser Caching: We examine browser caching
for each device type and show that smartphone
browser caches are not as effective as laptop caches.
Adding a small browser cache to each device is suf-
ficient to capture most of the achievable savings.
Browser cache savings vary widely across users,
with benefits from 0 to 80% in terms of both re-
quest hits and byte savings.

• Proxy Caching: We evaluate the effectiveness of
a Web proxy cache for our environment. We show
request hit rates from 8 to 40 percent, and band-
width savings from 5 to 25 percent. We break out
caching results per content type, and show that
video is not very amenable to caching. In addi-
tion, it is important to handle partial downloads
properly, otherwise a cache can actually increase
bandwidth consumption by a factor of 3.

The remainder of our paper is organized as follows: In
Section 2 we describe our proposed device identification
methodology and compare it with other approaches.
Section 3 presents the Web traffic characteristics from
our trace. In Section 4 we examine browser caching in
more detail, and in Section 5 the effectiveness of proxy
caching. Section 6 surveys related work and we con-
clude in Section 7.

2. DEVICE CLASSIFICATION
In this Section we describe how we identify the types

of devices in our network using packet information and
data mining rules.
In a typical wireless enterprise network, DHCP servers

are used to dynamically assign IP address to devices.
This presents a challenge in identifying devices on the
network, since an IP address can be re-used by multiple
devices over separate, non-overlapping periods of time.
Thus, a device can not uniquely identified solely by an
IP address. While a MAC address usually uniquely
identifies a device, the MAC address seen in a trace
may not correspond to the device that originated the
packet, depending on where the sniffer is situated. In
our case, the sniffer sits between two gateways, thus the
MAC addresses are always that of the next hop routers.
Instead, we additionally capture all traffic from the

two DHCP servers that provide IP addresses to the en-
terprise network. We feed our classification algorithm
with data derived from those packets to we perform our
identification. Specifically, we perform the following ac-
tions: a) calculate the DHCP lease to determine a time
period that a device is associated with a specific IP
address, b) calculate the session lengths during which
devices actively generate traffic, c) uniquely identify the
device based on the client MAC address available in the

DHCP HTTP & OUI [22]
Device OS # % # %

Laptop All 2478 79.9 2182 73.6
Windows 2107 67.9
Mac OS X 333 10.7
Linux 38 1.2

Smarphone All 534 17.2 398 13.4
iOS 440 14.2
Android 54 1.7
BlackBerry 37 1.2
Windows 3 0.1

Other All 52 1.7 484 16.3
Cisco VoIP 15 0.5 0 0
Unclassified 37 1.2 65 2.2
Unknown - - 419 14.1

All 3064 100.0 3064 100.0

Table 1: Distribution of Devices in the Trace

DHCP headers when the device requests an IP address,
d) classify the device.
We create a set of classification rules based on the

arguments that are included in the options of the DHCP
Request:

• Host-Name: We see if it contains a device specific
string. Some cellphones set their host-name to a
string that can identify the type of the device. For
example, many iOS cellphones have names that
follow the pattern of ‘*-iPhone’, where * usually
corresponds to a string related to the user.

• Vendor-Name: We see if it contains an operating-
system specific string. Some OSs include, in their
vendor-name, a string that can uniquely identify
the OS. For example, most versions of Microsoft
Windows include the string ‘MSFT’[5].

• Parameter-Request-List : We see if it contains spe-
cific DHCP options. A DHCP request contains a
list of parameters indicating the set of DHCP op-
tions that a client is interested in. Some of these
options (as well as their combinations and order-
ing) are unique for each device, as they typically
indicate its auto-configuration capabilities.

• MAC-Address : We see if the first three bytes of the
device MAC address can be associated with a spe-
cific vendor, also called the Organization Unique
Identifier (OUI). Using the IANA Ethernet assign-
ments [3], we determine the vendor of the interface
and then we identify if that vendor can be directly
mapped to a specific type of device.

We use association rules to determine regularities be-
tween certain of the above values. For example, an as-
sociation rule can be expressed as follows: given that
we have seen a host-name containing the string ‘Black-
Berry’, what is the probability that the vendor-name
will contain the string ‘BlackBerry’ (2-itemset). We
select only few of all possible association rules by us-
ing breadth-first search, and prune those that are infre-

2

quent (low support) or have low confidence (similar to
a-priori algorithm [13]).
The rules that have high confidence in at least one di-

rection (conf(X ⇒ Y) and conf(Y ⇒ X)), and are not
contradictory, are broken into their corresponding item-
sets X and Y . Those rules are then used for potential
classification. For example, [host-name contains An-
droid’] ⇔ [Parameter-Request-List contains ’1 121 33 3
6 28 51 58 59’] happens with confidence 100%. The re-
verse direction [Parameter-Request-List contains ’1 121
33 3 6 28 51 58 59’] ⇔ [host-name contains Android’]
happens with confidence 82.35%, and the remaining
17.63% are related to a device that neither has ’An-
droid’ in the host name (e.g., when the user has mod-
ified the default host-name) or any other name from
another device type. Now a host-name that contains
’Android’ or a Parameter-Request-List that contains ’1
121 33 3 6 28 51 58 59’, can be used to classify Android
devices. In other words, we assume no ground-truth but
quantify every rule. The appendix includes additional
examples as well as some common association rules.
However, there are contradictory rules that contain

useful information. For example, we have observed dif-
ferent manufacturers of ’Android’ devices contain some
unique fields. For these rules, we apply a Bayesian Clas-
sifier to identify the device. We classify into the fol-
lowing categories: Windows, Linux, Mac OS X, Other
Laptop, Android, Symbian, Blackberry, iOS, Windows
Mobile, Other Mobile, Cisco VoIP, and Uncategorized.
In addition, one could use our methodology to derive
sub-categories of those (iOS version, Android manufac-
turer, etc.). Table 1 shows the resulting classification
from our trace. We use the first identified device, as
some of the laptops may run multiple OSs (e.g., multi-
ple boot clients or those running virtual machines).
Table 1 also includes the classification resulting by

using the algorithm from [22], which is effectively based
on the combination of HTTP User-Agents (UA) and
an audit database of OUIs. For comparison, we re-
construct the database using the client IP address, the
client MAC address and the IP Lease Time from the
DHCP requests. We see that the approach from [22]
has a high number of unclassified devices. The rea-
son for this behavior is that classification based on the
User-Agent header can cause errors. We have observed
software development kids installed on laptops that em-
ulate iPhone browsers (e.g. Mozilla/5.0 (iPhone Simu-
lator; U; CPU iPhone OS 4-2 like Mac OS X; en-us)
AppleWebKit/533.17.9), Virtual Machines running on
top of a laptop, user-agent strings (e.g. ’Mobile’,’LG’)
that are related to applications in laptops and not de-
vices (MobileSyncClient...), or encrypted user agents
(e.g., INjLGMo...). All of these can lead to misclas-
sifications.
Our methodology classifies almost 98.3% of devices,

Dates April 14-May 5, 2011
Client MAC Addresses 2,748
Client IP Addresses 1,895
Total Packets 1,067,846,981
Total Bytes 673 GB
DHCP Packets 1,629,537
HTTP Transfers 30,302,203
HTTP Downloaded Bytes 505 GB
HTTP Accessed Servers 115,977

Table 2: Dataset Properties

Response iOS Android RIM Windows MAC OS
HTTP 76.17 85.16 71.38 83.99 77.13
HTTPS 6.39 9.31 28.57 10.24 17.51
Email 1.88 2.26 0 0.28 1.65
SSH 0 0 0 0.04 0.09
Other 14.85 3.19 0.05 5.48 3.62

Table 3: TCP/IP Application Breakdown (%)

compared to 83.7% using the approach from [22]. Those
that are listed as “Unclassified” effectively do not be-
long to any of the above categories. The ones listed as
“unknown” are from devices that [22] could not identify
due to use of multiple conflicting user agents.

3. WEB TRAFFIC
We use traffic from a corporate network collected

from the last-hop gateway before the firewall to the In-
ternet. Both internal and external IP addresses are vis-
ible. A switch is configured with port mirroring to echo
the Internet traffic to the interface of the sniffer. All
interfaces are copper Gigabit Ethernet. The gateway is
rate limited to 100 Mbps, and the maximum bandwidth
observed by the wireless was 30 Mbps. Thus we believe
our system has sufficient capacity to capture all wire-
less traffic1. We collect traces from roughly 3000 unique
wireless users divided in 5 subnets. Table 2 summarizes
the details of the trace we captured.
We observe that almost 90% of the packets are from

TCP, and the majority of those are related to HTTP
protocol. Table 3 shows the breakdown of different TCP
services for our trace. We see across all devices, at least
75% of TCP traffic is HTTP. Since the focus of our
paper is on web behavior, we begin by briefly describ-
ing how we extract HTTP behavior from raw captured
packets.

3.1 Methodology
Our overall approach is to first reconstruct the TCP

streams from the component packets, and if the stream
is HTTP, parse the stream for the relevant HTTP infor-
mation (e.g., methods, URLs, request headers, response
1Our sniffer machine is an 2.33 GHz 8-processor Intel Xeon
with 10 GB of RAM and 11 TB of disk. It runs Linux RHEL
5.5 with RedHat’s patched 2.6.18 kernel. Our software was
developed using the libpcap that comes with RHEL 5.5, ver-
sion 0.9.4-15.

3

Response iOS Android RIM Windows MAC OS
GET 92.75 96.21 95.30 95.47 95.55
POST 7.10 3.77 4.77 4.44 4.37
HEAD 0.14 0.01 0.23 0.09 0.07
PUT 0.01 0.01 0.00 0.00 0.02

Table 4: HTTP Request Method (%)

headers, etc.).
For TCP reassembly, we chose to implement our own

routines based on the RFC specification [7], because
some of the available tools could not satisfy our re-
quirements. For example, Libnids [4] allows only a fixed
number of simultaneous active TCP streams, whereas
our code is limited only by available memory. Moreover,
Libnids produces flow information only only if a com-
plete connection sequence is observed (SYN and FIN
or RST packets have been exchanged). However, in
our trace of mobile devices, a full connection sequence
is not always observed. This happens in 11.3% of the
connections in our trace. We deal with this by timing
out connections that do not generate any packets for
over two minutes. If a connection is idle for more than
that period, we consider it closed.
At the HTTP layer, we reconstruct the Web object

by parsing the stream and calculate metrics such as
the actual bytes transferred. In fact, the actual bytes
transferred is not always available in the HTTP request
or response headers for the following reasons. First,
many HTTP connections are aborted before the whole
object gets completely downloaded [20]. Second, HTTP
1.1 introduced a special type of object encoding, called
Chunked-Encoding, in which response headers do not
include the content length of the object (this is useful
for transfers where the server does not know in advance
the full size of the object). We thus calculate bytes
transferred based on the actual unique (non-duplicate)
packets seen. The Bro IDS [2] is another engine that
can perform HTTP object reconstruction. Bro does not
report the object transferred sizes, but the actual object
size (after decompression). Hence, we developed our
own HTTP object reconstruction process.

3.2 HTTP Traffic
The approach we follow for analyzing the HTTP data

is to first present our main observations and then dig
deeper to elaborate as appropriate.

3.2.1 Requests and Responses

Table 4 presents the breakdown of HTTP request
methods in the trace. Only methods that exceed a cer-
tain threshold (> 0.01%) are listed. Methods that fall
below that threshold (e.g., OPTION, DELETE, etc.)
are omitted. While the distribution of request meth-
ods is broadly similar across devices, iOS devices use a
larger percentage of POST requests than the other de-

iOS Android RIM Windows MAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Response Code per OS in Responses

200 OK
204 No Content
206 Partial Content
302 Found
304 Not Modified
404 Not Found
Other

iOS Android RIM Windows MAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Response Code per OS in Bytes

200 OK
204 No Content
206 Partial Content
302 Found
304 Not Modified
404 Not Found
Other

Figure 1: Response Code per Operating System

Response iOS Android RIM Windows MAC OS
If-Modified 3.97 36.49 0.37 16.07 16.77
If-None-Match 1.62 28.40 0.05 8.53 8.49
If-Match 0 0 0 0.03 0
If-Range 0 0.07 0 0.08 0

Table 5: Conditional GET Requests (%)

vices do. POST requests are used when the user sends
information to the server.
We classify applications in iOS by using the HTTP

Request User-Agent header. We observe that the top
10 applications in iOS generate 80% of the POST mes-
sages. Of those 10, 6 of them come pre-installed in
iOS devices (Apple Maps, Stocks, Weather, iTunes and
Browser).
Figure 1 provides an overview of the response codes

per device type. We observe that Windows and MAC
OS X laptops generate a higher fraction of 304 (Not
Modified) responses compared to the smartphones. This
code is typically returned in response to a client gen-
erating a conditional GET request, which validates a
client’s cached copy of a document which may not be
current. If the copy is up-to-date, a 304 response is re-
turned, with no actual data transferred; if not, the full
object is downloaded and a 200 response is generated.
Thus, 304 responses are an indication of the browser
caching activity at each of the devices. Given the lack
of 304 response in the smartphones, Figure 1 suggests
that browser caches on the smartphones are not as ef-
fective or sophisticated as those on the laptops.
We also identify the conditional GET requests that

are responsible for the 304 Not Modified responses. Our
results are summarized in Table 5. We see that lap-
tops make significantly more use of these headers than
smartphones do. This indicates that laptops have more
sophisticated browser caching features, despite the fact
that smartphones may be ostensibly using the same
browser code base. We examine this in more detail in
the next section.

4

iOS Android RIM Windows MAC OS X
0

20

40

60

80

100
P

er
ce

nt
ag

e
Content Type per OS in Requests

Image
Text
Application
Multipart
Video
Audio
Other

iOS Android RIM Windows MAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Content Type per OS in Bytes

Image
Text
Application
Multipart
Video
Audio
Other

Figure 2: Content Types per Operating System

In addition, a significant fraction of bytes downloaded
by iOS and BlackBerrys are returned using 206 (Partial
Content) responses. This code is used for large objects
that must be chunked. Most of those objects have the
same URL. In these cases, identifying the unique re-
quests requires processing also the Range: field of the
HTTP request.
We next examine what kinds of content are down-

loaded by smartphones and laptops. Figure 2 shows
the relative percentages of the various content types re-
quested in the trace, both in terms of requests and in
bytes. Across all platforms, a minority of requests for
multimedia content (video and audio) generate the ma-
jority of the bytes transferred. Nonetheless, among the
iOS requests, a higher number of video requests is asso-
ciated with video objects. In addition, 55% of the iOS
bytes downloaded are multimedia, which is higher than
seen on the other devices. There is also a significant por-
tion of BlackBerry traffic that is associated with Audio.
Finally, the distribution of content types on Windows
and MAC OS X laptops are broadly similar.
We next identify, for each content type, how many de-

vices download that content type. We do this to deter-
mine if the differences observed above are due to outliers
or if it is a behavior broadly characteristic of each de-
vice type. Figure 3 shows the cumulative distribution of
downloaded bytes for each content type on a per-client
basis. The starting point of each CDF indicates the
relative percentage of the devices that do not use that
content type. For example, there is a unique outlier in
the BlackBerry trace for audio traffic, which requests
40% of the total HTTP traffic across all BlackBerries.
Moreover, video traffic is more popular across laptops
(Windows and MAC OS X) than it is for smartphones.
For example, 55% of the Windows laptops download
at least one video object, whereas this happens only
for 20% of the iOS devices. The median laptop de-
vice downloads almost 100 times more video bytes than

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Image

iOS
Android
RIM
Windows
MAC OS X

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Text

iOS

Android

RIM

Windows

MAC OS X

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Application

iOS
Android
RIM
Windows
MAC OS X

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Multipart

iOS
Android
RIM
Windows
MAC OS X

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Video

iOS
Android
RIM
Windows
MAC OS X

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

Download Bytes per device

F
(x

)

Audio

iOS
Android
RIM
Windows
MAC OS X

Figure 3: CDF of downloaded bytes per content type

an iOS device, and significantly more than the median
Android device. Thus, iOS users access video content
relatively more frequently than Android users.

3.2.2 Multimedia Analysis

Figures 1 and 2 showed that, respectively, there are
a large fraction of 206 responses in our trace and that
a large number of bytes are due to multimedia traffic.
Here we examine the interaction of these two factors to
further understand the role of multimedia content.
The stacked bars of Figure 4 breaks down the distri-

bution of response codes across the devices for video and
audio in terms of number of requests and bytes trans-
ferred. Only the 200, 204, 206, and 304 response codes
are given since they are the only ones seen for the mul-
timedia content. In addition, BlackBerry devices did
not generate any video traffic. The 304 code was rarely
returned in video requests generated by laptops. This
suggests that there is little locality in video content,
since the browser caches do not re-validate them using
if-modified-since requests. Moreover, the majority of
the responses in iOS and Androids are 206 for multi-
media content. This is a unique behavior especially for
iOS devices, since around 20% of the users download
video traffic.
To further understand the role of 206 responses, we

examine the User-Agents headers in iOS requests. This
header, while not completely reliable, generally indi-
cates the application that is requesting content. We
observe that two User-Agents, namely AppleCoreMedia
and iTunes, generate almost 98% of the video traffic.
We also observe that there is a small portion of video
traffic from MAC OS X that belongs to a similar User-
Agent, namely CoreMedia. Figure 5 shows the break-
down of the application usage in iOS and MAC OS X

5

iOS Android RIM WindowsMAC OS X
0

20

40

60

80

100
P

er
ce

nt
ag

e
Video in Requests

200 OK
204 No Content
206 Partial Content
304 Not Modified

iOS Android RIM WindowsMAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Video in Bytes

200 OK
204 No Content
206 Partial Content
304 Not Modified

iOS Android RIM WindowsMAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Audio in Requests

200 OK
204 No Content
206 Partial Content
304 Not Modified

iOS Android RIM WindowsMAC OS X
0

20

40

60

80

100

P
er

ce
nt

ag
e

Audio in Bytes

200 OK
204 No Content
206 Partial Content
304 Not Modified

Figure 4: Response Codes for Multimedia Traffic

across all types of devices

iOS MAC OS X
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f R
es

po
ns

es

AppleCoreMedia
iTunes
Browser
Other App

iOS MAC OS X
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f B
yt

es

AppleCoreMedia
iTunes
Browser
Other App

Figure 5: Applications that generate multimedia traffic

in iOS vs MAC OS X (requests, bytes)

for multimedia traffic. Note that the total video content
downloaded is 23GB and 31 GB, for iOS and MAC OS
X respectively.
The majority of the multimedia requests in iOS de-

vices are generated by AppleCoreMedia and those re-
quests contribute almost half of the bytes. Moreover,
a very small portion of iTunes requests contribute the
other half of the bytes, indicating that the size of each
object is larger. However, iTunes is used by only 2% of
the users. On the other hand, in laptops such as MAC
OS X, most of the video traffic is generated by the Web
browser, and only 5% of the requests are generated by
CoreMedia and even fewer are related to iTunes.
To investigate this unique behavior we isolated the

DNS names of the AppleCoreMedia in order to get a
view on the services that use this iOS component. We
observe at least 82 services. The most used service was
googlevideo (at 65%). Thus, our results indicate that
AppleCoreMedia is a component that plays the role of
the media player in iOS devices [1].
Given that the majority of the requests are from Ap-

pleCodeMedia, but contribute only half of the bytes,

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Object Size (Bytes)

F
(x

)

CDF of Object Size for Multimedia Content in iOS

Browser Response 200
AppleCoreMedia Response 200
AppleCoreMedia Response 206
iTunes Response 200
iTunes Response 206

x100

Figure 6: Cumulative Distribution of the iOS multime-

dia traffic per object size

and that there are a high number of 206 responses, we
turn our attention to the unique properties of this iOS
component. Figure 6 shows the cumulative distribution
per object size of the multimedia content in iOS. We
observe that the median object handled by AppleCore-
Media is 100 times smaller than the median object for
iTunes. Moreover, almost 95% of the AppleCoreMe-
dia objects are < 1MB. Finally, we see no relationship
between 200 and 206 responses and object size. This
suggests the iOS component will chunk the videos us-
ing the 206 response, but only if they exceed a specific
size.
Thus, we see that the AppleCoreMedia iOS compo-

nent plays a significant role in smartphone video stream-
ing. We finally check whether this is related to the
Adaptive Streaming technique that Apple has introduced
in RFC [26]. We break the video content type to the
sub-content types, this is because the there are only few
MIME video types that are used for Adaptive Stream-
ing. We observe that only 13% of the video requests
and 7% of the video is generated by MP2T (MPEG-
2 Transport stream) video type, which is supported by
the Adaptive Streaming RFC. Hence the properties that
we have observed for the iOS media player is a general-
ized phenomenon and not limited to a specific technol-
ogy.

3.2.3 Aborted Transfers

In this subsection, we investigate the behavior of the
objects in relation to the size of the object. For pre-
sentation purposes, we group the data in laptops vs
smartphones.
Figure 7 shows two scatter plots of document size

versus how many bytes were actually downloaded, for
laptops and smartphones respectively. Each point is a
download from our trace. Note both axes are in log
scale. If downloads were never aborted, each graph

6

Figure 7: Transfer size versus content length

would show a diagonal with a slope of one. However,
we see that many transfers are significantly less than
the corresponding document’s content length, indicat-
ing that they are frequently aborted. The scatter plots
visually show a distinct difference in behavior between
smartphones and laptops. For large object sizes, around
5MB to 100MB, the scatter plots indicate that smart-
phones tend to abort the download much more fre-
quently than laptops.
While interesting, it is difficult to discern the relative

behavior of the devices from the scatter plots, partic-
ularly since there are many more laptops than smart-
phones, and consequently more data points. To illus-
trate this issue further, we normalize based on the av-
erage transfer size M for a document of size N, based
on all transfers for documents of size N. We call this
the download ratio. The results are shown in Figure
8. Again, if all downloads were completed, one would
see a diagonal Y = X , which here we include for con-
venience. Again, note the log scales. We see that, on
average, the full document is not downloaded, and that
for sizes greater than 4 MB, the behavior of the iOS de-
vices diverges from the other devices. iOS devices are
significantly less likely to download full objects than
other devices. The second subplot (8 (b)) looks at the
download ratio for iOS devices broken down by content
type. We see here that videos are much less likely to
be fully downloaded than other content types. In the
third subplot, we look exclusively at video downloads on
iOS and distinguish by the application generating the
request. We see that streaming content, requested by
the AppleCoreMedia component, is frequently aborted.
While there very few iTunes transactions, most of them
are downloaded fully.
These results indicate that aborted downloads hap-

pen mainly for streaming video requests. This also sug-
gests that proxy or browser caching policies [27] that
would cache the object only if it gets fully downloaded
would probably fail to provide savings for video traffic
in iOS devices. We examine this issue in more detail in

0 2K 8K 32K 128K512K 2M 8M 32M128M512M
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Content Length (Bytes)

T
ra

n
sf

e
r

S
iz

e
 (

B
yt

e
s)

Partial Downloads per Device

iOS
Android
Windows
MAC OS X

0 2K 8K 32K 128K512K 2M 8M 32M 128M512M
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Content Length (Bytes)

T
ra

n
sf

e
r

S
iz

e
 (

B
yt

e
s)

Partial Downloads for iOS

Text
Image
Video
Audio

0 2K 8K 32K 128K512K 2M 8M 32M 128M512M
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Content Length (Bytes)

T
ra

n
sf

e
r

S
iz

e
 (

B
yt

e
s)

Partial Downloads for iOS Video

iTunes
AppleCoreMedia
Browser

Figure 8: HTTP downloads per device type, iOS con-

tent type, and iOS application

iOS Android RIM Windows MAC OS
Requests (K) 283.0 70.9 1.1 10087.7 3145.3
Objects (K) 261.4 70.6 1.0 9978.0 3137.2
Difference 7.7% 0.4% 9% 1% 0.2%

Table 6: Differences between Requests and Objects

Sections 4 and 5.

3.2.4 Popularity

Popularity is frequently calculated from Web traces
as a means of illustrating document access frequency
and its implications for caching of Web objects. While
most prior works have focused on the distributions of
accesses to objects, we see a large proportion of requests
that are returned as chunks with the 206 partial content
response code. We thus believe the appropriate way to
view Web metrics is to include this feature and account
for its behavior.
For example, in the context of popularity, consider

the case of two successive requests for content to the
same video but for successive distinct chunks, as is com-
monly the case. Ignoring the chunk ranges would count
those requests as two references to the same object,
rather than one request, thus over-estimating the popu-
larity of that object. Since media traffic in smartphones
are mostly served by 206 responses, this issue is becom-
ing more prominent. Here we show its implications for
popularity.
Table 6 shows the difference between calculating re-

quests versus objects. Since iOS and BlackBerry de-
vices receive a lot of media with 206 responses, there is
a much bigger number of requests compared to objects.
These extra requests are due to chunked objects, where
ranges must be taken into account to identify accesses
to different parts of the object.
Figure 9 depicts the object and request distributions.

We perform a statistical fit using several distributions

7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Distribution of Request Popularity

Request Popularity

#
 o

f
R

e
fe

re
n

ce
s

iOS

iOS Fit: y=8136.3x−0.793 − R2=0.9865
Android

Android: y=48081.8x−1.097 − R2=0.9873
MAC OS

MAC OS Fit: y=239923.1x−0.935 − R2=0.9906
Windows

Windows Fit: y=563358.7x−0.916 − R2=0.9910

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Distribution of Object Popularity

Object Popularity

#
 o

f
R

e
fe

re
n

ce
s

iOS

iOS Fit: y=10493.5x−0.818 − R2=0.9860
Android

Android: y=48167.2x−1.097 − R2=0.9873
MAC OS

MAC OS Fit: y=241554.2x−0.936 − R2=0.9907
Windows

Windows Fit: y=577588.8x−0.917 − R2=0.9911

Figure 9: Distribution of objects ranked in number of

references

(Zipf Law, Stretched Exponential, Zipf Law with expo-
nential cutoff). We find that none of them are able to
satisfactory fit the entire range of requests or objects in
our dataset. This is an artifact of the very long tail of
requests with just only reference For example, in iOS,
70% of requests are to a unique object range, implying
a hit rate no greater than 30%, whereas ignoring the
range requests gives a set of 60% of objects, implying a
40% upper bound.
Nonetheless, the head of the distribution, follows a

Zipf Law. Figure 9 shows that the fit has R2 > 0.987
across all devices. This indicates that caching the most
most common objects would be enough to capture most
of the request hit rate.

4. BROWSER CACHE EMULATION
Virtually all browsers use local caches to improve the

latency of requests that can hit in the cache and to re-
duce the network bandwidth consumed. In the mobile
environment, this can also reduce energy consumption
and improve battery life. In Section 3.2.1, Figure 1
and Table 5 provided evidence that suggested that the
browser caches on the smartphones were not as sophis-
ticated as those on the laptops. In this Section, we
explore this area further.
To examine the effectiveness of a local browser cache,

we evaluate them by replaying the trace for each device
through an additional simulated cache dedicated solely
to that device. If the addition of such a cache does not
provide any benefits, it suggests the the browser cache
is performing well. If it does provide benefits, it sug-
gests that the browser cache is either too small or not
exploiting all the available caching features of HTTP.
Our emulated browser cache follows the cacheability re-

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Byte Savings (%)

F
(x

)

a − 10MB vs 10GB

Smartphone − 10MB −Partial
 Laptop − 10MB −Partial
Smartphone − 10GB − Partial
Laptop − 10GB −Partial

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Request Hit Rate (%)

F
(x

)

b − 10MB vs 10GB

Smartphone − 10MB −Partial
 Laptop − 10MB −Partial
Smartphone − 10GB − Partial
Laptop − 10GB −Partial

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Byte Savings (%)

F
(x

)

c − Partial vs Discard

Smartphone − 10MB −Partial
 Laptop − 10MB −Partial
Smarthphone − 10MB − Discard
Laptop − 10MB − Discard

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Request Hit Rate (%)

F
(x

)

d − Partial vs Discard

Smartphone − 10MB −Partial
 Laptop − 10MB −Partial
Smarthphone − 10MB − Discard
Laptop − 10MB − Discard

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Byte Savings (%)

F
(x

)

e − using Ranges vs Not using ranges

Smartphone − 10MB w/ ranges
 Laptop − 10MB w/ ranges
Smartphone − 10MB w/o ranges
Laptop 10MB − w/o ranges

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Request Hit Rate (%)

F
(x

)

f − using Ranges vs Not using ranges

Smartphone − 10MB w/ ranges
 Laptop − 10MB w/ ranges
Smartphone − 10MB w/o ranges
Laptop 10MB − w/o ranges

Figure 10: A comparison of browser cache hit rate in

different dimensions: (a) persistent storage space, (b)

caching policy, (c) handling ranges.

quirements from RFCs 2616 [8] and 2965 [9]. We use
an LRU replacement policy, both for simplicity and be-
cause it is the default in the well-known Squid [27] proxy
cache. We describe our cache implementation in more
detail in the appendix, including several optimizations
for video caching and partial downloads.
Since smartphones experience ranged requests, aborted

transfers, and partial downloads, we consider several
policies in order to evaluate the performance of a a ded-
icated browser cache:

• Discard: Partially downloaded files are excluded
from reuse. The cache simply discards all data
that has been already downloaded. This is the
default policy for Squid.

• Full Download: The cache continues downloading
the entire object, even when the user aborts the
transfer.

• Conditional Download: The entire object is only
downloaded when X percentage of the object has
already been requested by the user. This is avail-
able in Squid as a configurable option.

• Partial Download: The cache stores only the por-
tion of the object that has already been requested
by the user.

Note that the Cache-Control header in an HTTP re-
sponse is handled differently in browser caches, as docu-

8

Location Cacheability in iOS Android RIM Windows MAC OS
Browser Bytes 86.74 70.27 51.83 81.75 82.43

Requests 70.25 68.85 55.87 63.43 65.51
Proxy Bytes 85.20 41.10 48.42 54.74 67.21

Requests 64.70 65.20 47.86 56.20 57.42

Table 7: Cacheable Bytes and Requests per OS

ments characterized as private are considered cacheable.
Table 7 shows the differences in cacheability across plat-
forms, from the point of view of the browser cache and
a proxy cache. We observe that the majority of the
traffic in iOS, Windows and MAC OS X is considered
cacheable. Interestingly, the percentage of content that
is cacheable decreases significantly across most plat-
forms when proxy caching rules are used, with the ex-
ception of iPhones.
Since some users generate significantly more traffic

than others, simply reporting an average benefit for
browser caches would not sufficiently describe their be-
havior. Instead, we show the cumulative distribution of
the benefits.
We begin with Figures 10 (a) and 10 (b), which show

the distribution of the improvement provided by an ad-
ditional browser cache in terms of bytes and requests
respectively. In these graphs, the partial download pol-
icy is used, and comparison is made between a 10 MB
cache and a 10 GB cache. We see several points from the
graphs. First, the distribution of benefit varies widely
across the devices, based on their individual access be-
havior. Second, the browser cache consistently provides
more benefit to the smartphones than to the laptops,
adding to the evidence that the smartphone caches as
not as effective as the laptop caches. Third, we see lit-
tle difference between the 10 MB and 10 GB curves.
This suggests that the reason the smartphone caches
do worse is because the caches are not sophisticated
enough, rather than because they are too small.
Figures 10 (c) and 10 (d) compare the partial and dis-

card policies, again for bytes and requests respectively.
We see the partial policy consistently outperforms the
discard policy, sometimes by up to 50%. Thus a browser
cache should not discard the object even if it is only
partially downloaded.
Figures 10 (e) and 10(f) compare a browser cache that

supports range offsets with one that does not. The RFC
states that if the cache cannot process ranges, then it
must not make any effort to cache range requests. We
observe only a very slight improvement in performance
for those caches that process ranges. Thus, if the im-
plementation complexity to add the functionality that
processes ranges is high, then it may not worth caching
range requests.
We summarize our conclusions as follows: a) laptop

browser cache implementations are more sophisticated
than smartphones; b) A small increase in the browser
cache is sufficient to capture most of the savings; c) A

browser cache should be able to handle partially down-
loaded objects; d) A browser cache does not necessar-
ily need to handle ranges, as the difference in savings
is small; e) Looking only at average savings across all
devices does not provide sufficient detail, as traffic dis-
tributions are skewed.

5. PROXY CACHE EMULATION
Given the predominance of Web traffic in our trace, it

is useful to determine how effective a Web proxy cache
would be in our environment, both in terms of band-
width savings and in reduced response time. We use our
cache emulation software described earlier in Section 4
with the following configurations: (a) we implement the
proxy cache emulation across all traffic, and not per de-
vice and (b) we follow the cacheability rules for proxy
caching rather than for the browser. We examine the
same caching policies described in Section 4.
One challenge in properly emulating a proxy cache’s

behavior is how to account for objects in the cache that
are not fresh. Even if an object is not fresh, it could still
be the same as the object on the origin server. Thus
when the proxy tries to retrieve it via a conditional
GET request, the object could be returned either in
full via a 200 response or simply re-validated via a 304
response. To quantify the impact of a proxy cache, both
cases need to be considered, thus we take the following
approach. In one configuration, always revalidated, a
cached object is always assumed valid with the object at
the server. In that case, the cache only revalidates the
object and receives a 304 response. In the second config-
uration, never revalidated, the object is always assumed
stale and the full object is retrieved via a 200 response.
The first approach is the most optimistic case in terms
of savings, while the second is the least optimistic one.
In reality, of course, the actual behavior will lie between
the two. To be conservative, we always evaluate using
the second approach, unless otherwise stated.
Figure 11 shows the byte savings and request hit rates

of laptops and smartphones, using the two assumptions,
over a range of cache sizes. We note several observa-
tions. First, laptops tend to have better object and
byte hit rates than smartphones. This may be a result
of our trace, which has many more laptops than smart-
phones. Second, benefits achieve diminishing returns at
around 100 GB, a relatively small size. Thus size, and
consequently replacement policy, is not a significant is-
sue. Finally, the validation assumption makes a large
difference in the estimate of the byte savings. This is

9

100MB 1GB 10GB 100GB 1TB
0

10

20

30

40

50
Proxy Cache Emulation Byte Hit Rate

Size

B
yt

e
S

av
in

gs
 (

%
)

Laptop − Never Revalidated
Smartphone − Never Revalidated
Laptop − Always Revalidted
Smartphone − Always Revalidated

100MB 1GB 10GB 100GB 1TB
0

10

20

30

40

50
Proxy Cache Emulation Request Hit Rate

Size

R
eq

ue
st

 H
it

R
at

e
(%

)

Laptop − Never Revalidated
Smartphone − Never Revalidated
Laptop − Always Revalidted
Smartphone − Always Revalidated

Figure 11: Proxy cache hit rate with several revalida-

tion strategies and persistent storage sizes.

Policy Hit Rate Smartphones Laptops
Partial with Byte 11.34% 17.28%
URL & Range Request 38.42% 30.55%
Partial with Byte 10.78% 16.32%
URL & No Range Request 34.55% 27.87%

Table 8: Proxy cache hit rate for infinite sized storage

space with and without handling Range Offsets

particularly true for laptops, where it can make as much
of a difference as 50%. This happens because the ob-
ject freshness for laptops is typically smaller than for
smartphones, as observed by the max-age header val-
ues, which tend to be larger in smartphone responses.
Table 8 shows the benefits of a proxy cache comparing

when range offsets are handled or not. The savings for
both cases are similar, indicating that caching the range
requests does not add a significant amount of savings.
We deepens our analysis by looking at the content-

type of the Web traffic and evaluate how proxy caching
benefits each content-type. Figure 12 shows the benefits
of a proxy cache for each content type across the range
of devices, for both requests and byte savings.
Images and text have reasonably good byte hit rates,

usually > 30% across most of the devices. However,
we observe video hit rates are very small. This may be
an artifact of the few requests for video content in our
trace, which means little redundancy can be identified
at the object level. However, it suggests caching videos
may not yield much savings.
Figure 13 (a) shows the byte savings for the vari-

ous policies described in Section 4 that deal with par-
tially downloaded objects. A partially downloaded ob-
ject is cached in its entirety if more than X% of its
size has been already downloaded by a user. The 0%
case corresponds to the full-download policy, i.e., the
cache downloads the full object independently of how
much it has been already downloaded. The 100% case
is the discard policy, i.e., any partially downloaded ob-

iOS Android RIM Windows MAC OS X
0

10

20

30

40

50
Proxy Cache Emulation Byte Hit Rate

B
yt

e
S

av
in

gs
 (

%
)

Image
Text
Application
Video
Audio

iOS Android RIM Windows MAC OS X
0

10

20

30

40

50
Proxy Cache Emulation Request Hit Rate

R
eq

ue
st

 H
it

R
at

e
(%

)

Image
Text
Application
Video
Audio

Figure 12: Proxy cache savings for infinite sized cache

per content type for each operating system

0% 1% 5% 10% Full
−300

−250

−200

−150

−100

−50

0

50
a − Proxy Cache Emulation Savings

Extra Portion of Object Downloaded

S
av

in
gs

 (
%

)

Laptop
Smartphone

0% 25% 50% 75% 100%
−300

−250

−200

−150

−100

−50

0

50
b − Proxy Cache Emulation Savings

Object > X% − Proxy Cache Stores Full Object

S
av

in
gs

 (
%

)

Laptop
Smartphone

Figure 13: (a) Conditional Caching for Partial Down-

loads and (b) Effect of Cache Buffering on Savings

ject is not cached. Any value in-between corresponds
to the conditional-download policy. The graph shows
that the full-download policy is actually detrimental,
requesting content that is never viewed, particularly for
smartphones.
Moreover, savings for smartphone traffic is more sen-

sitive to the actual percentage of downloaded bytes af-
ter which an object becomes cacheable. This is because
large objects are more likely to be partially downloaded
by smartphones, as shown in Figure 13 (b), which re-
sults in more downloaded data for the full-download and
the conditional-download policies. The discard policy
provides savings very close to the optimal one, indicat-
ing that partially downloaded objects are not likely to
be accessed more than once.
Figure 13 (b) shows the impact that additionally down-

loaded data, over what users ask for, has on bytes sav-
ings. An HTTP proxy cache, conceptually, acts as a
buffer between the clients and the servers. It usually

10

downloads more data than users request, typically be-
cause it is better connected with the servers. This is es-
pecially true for wireless clients, where packet losses at
the wireless interface make TCP connections between
the clients and the cache slower than the connection
between the cache and the servers. To evaluate this
effect, we consider the case where the cache downloads
X% more data than the data downloaded by the clients
(up to the maximum size of the object). The first set
of bars correspond to the optimal case, i.e., when the
cache stores only the amount of bytes that the user is
requesting, while the last effectively becomes the full-
download policy. We see that the smartphone traffic
is especially sensitive to these buffering issues. Again,
partially downloaded objects are the main reason that
these effects are more prominent in smartphone traffic
than for laptops.

6. RELATED WORK
The following papers [18, 19, 17, 22, 25] have stud-

ied the network traffic generated by smartphone de-
vices. More specifically, Falaki et al. [18, 19] char-
acterized smartphone usage by installing custom log-
ging software in 255 mobile devices. They focus on the
diversity among smartphone users in terms of session
times, traffic generated, energy consumed and appli-
cation usage. Maier et al. [25] identified devices us-
ing a combination of IP TTL and User-Agents, and in-
vestigated smartphone traffic characteristics using full
traces. Erman et al. [17] identified devices according
to the User-Agents string only, and captured TCP flow
properties. They provided an overview of the video de-
livery in smartphone devices. Finally, Gember et al.
[22] cross-validated the User-Agent outcome with the
Organization Unique Identifier from the packet’s MAC
address.
In our work, we use a DHCP OS fingerprinting algo-

rithm to identify the devices. The proposed algorithm
uses some of the fields reported in [24] and identifies
association rules. Since the algorithm is based on the
DHCP traffic, we are able to classify a device as soon
as it receives an IP address; hence before sending any
other packet. Moreover, we do not assume any ground
truth in terms of classification. We identify association
rules and quantify the classification outcome. We show
that our methodlogy can identify 98% of the devices,
compared to [22], which could identify 83% of the de-
vices in our trace. The difference in the classification
outcome is because UAs (a) can be encrypted, (b) may
be related to an emulation enviroment (e.g. iPhone em-
ulator), or (c) can be application specific. The later is
more apparent in smartphone devices.
In terms of the actual traffic, our work also goes be-

yond a smartphone versus laptop analysis for HTTP
content [22, 25], or video delivery study in smartphone

devices [17, 21]. We break the network based on device
type (iOS, Android, BlackBerry, Windows, MAC OS
X), and showcase that each device has unique network-
ing patterns. We study the impact of all applications
in the network and extend our work into caching. We
show that caching in mobile devices needs to take into
account some new properties, which were not appar-
ent in the earlier wired literature [11, 20, 14, 23]. For
instance, storing the full object, as per the Squid de-
fault policies, may result in a networking overload. Fi-
nally, we investigate the impact of downloading policies
in browser caches.

7. CONCLUSION
The explosive growth of smartphones is expected to

have significant impact on future network architectures
and the technologies that will be deployed to deal with
the increased traffic demands. Understanding the mate-
rial differences between smartphone and laptop traffic
patterns is important both to enterprise network ad-
ministrators and to cellular network providers.
In this paper we investigate the diverse traffic char-

acteristics of mobile devices and the effectiveness of
browser and proxy caching. Our results show that smart-
phone manufacturers should consider adding a small-
sized persistent browser cache. Moreover, conventional
caching rules may be reasonable for laptop traffic, but
may result in adverse bandwidth savings when smart-
phones are used. smartphone devices. We show that the
optimal policy for partially downloaded objects, which
downloads and caches only the portion of the object
that has been requested by the clients, is robust to
both smartphone and laptop generated traffic. There-
fore, implementing an optimal policy, while not trivial,
should be a high priority of any HTTP traffic optimiza-
tion product for wireless Internet access.

8. REFERENCES
[1] Applecoremedia. http:

//developer.apple.com/library/IOs/#documentation/

CoreMedia/Reference/CoreMediaFramework/_index.html.
[2] The bro network security monitor. http://bro-ids.org/.
[3] Ethernet number reqistration.

http://www.iana.org/assignments/ethernet-numbers.
[4] Libnids. http://libnids.sourceforge.net/.
[5] Microsoft DHCP Vendor and User Classes.

http://support.microsoft.com/kb/266675.
[6] Video cache squid plugin. cachevideos.com/.
[7] RFC 793 TCP transmission control protocol.

http://www.ietf.org/rfc/rfc793.txt, Sep 1991.
[8] RFC 2616 hypertext transfer protocol – HTTP/1.1.

http://www.ietf.org/rfc/rfc2616.txt, June 1999.
[9] RFC 2965 HTTP state management mechanism.

http://www.ietf.org/rfc/rfc2965.txt, Oct 2000.
[10] Sandvine Global Internet Phenomena Report. Spring, 2011.
[11] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and

S. Williams. Removal policies in network caches for
world-wide Web documents. In SIGCOMM, 1996.

[12] B. Ager, F. Schneider, J. Kim, and A. Feldmann. Revisiting
cacheability in times of user generated content. In

11

INFOCOM. IEEE, 2010.
[13] R. Agrawal, R. Srikant, et al. Fast algorithms for mining

association rules. In VLDB, 1994.
[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.

Web caching and Zipf-like distributions: Evidence and
implications. In INFOCOM. IEEE, 2002.

[15] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and
O. Spatscheck. To Cache or not to Cache: The 3G case.
Internet Computing, IEEE, 15(2):27–34, 2011.

[16] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, and
O. Spatscheck. Network-aware forward caching. In WWW.
ACM, 2009.

[17] J. Erman, A. Gerber, K. Ramakrishnan, S. Sen, and
O. Spatscheck. Over the top video: The gorilla in cellular
networks. In IMC. ACM, 2011.

[18] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A first look at traffic on smartphones. In IMC.
ACM, 2010.

[19] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,
R. Govindan, and D. Estrin. Diversity in smartphone
usage. In MobiSys. ACM, 2010.

[20] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and
M. Rabinovich. Performance of Web proxy caching in
heterogeneous bandwidth environments. In INFOCOM.
IEEE, 1999.

[21] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. Rao.
Youtube everywhere: Impact of device and infrastructure
synergies on user experience. In IMC, 2011.

[22] A. Gember, A. Anand, and A. Akella. A comparative study
of handheld and non-handheld traffic in campus wi-fi
networks. In Passive and Active Measurement, pages
173–183. Springer, 2011.

[23] S. Jin, A. Bestavros, and A. Iyengar. Network-aware partial
caching for Internet streaming media. Multimedia Systems,
9(4):386–396, 2003.

[24] E. Kollman. Chatter on the wire: A look at DHCP traffc.
http://myweb.cableone.net/xnih/download/chatter-
dhcp.pdf,
2007.

[25] G. Maier, F. Schneider, and A. Feldmann. A first look at
mobile hand-held device traffic. In Passive and Active
Measurement. Springer, 2010.

[26] P. R. and M. W. Ed. HTTP live streaming. http://tools.
ietf.org/html/draft-pantos-http-live-streaming-07.

[27] The Squid Project. Web proxy caching.
www.squid-cache.org.

[28] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman. Identifying diverse usage behaviors of
smartphone apps. In IMC. ACM, 2011.

9. APPENDIX

9.1 Classification
Table 9 summarizes some common association rules

produced with the DHCP classification process. To
quantify the confidence of the rules, we used standard
data mining metrics: Support supp(X) is defined as the
portion of all devices that satisfy the rule x. Confidence
conf(X ⇒ Y) of an association rule X ⇒ Y is defined
as supp(X∩Y)/supp(X), where supp(X∩Y) is the sup-
port of rule X ∧ Y , namely, the portion of all devices
that satisfy both rule X and Y .
Note that all the association rules that were produced

happen to be non conflicting for our data. In other
words, two independently produced association rules,
when given the same input, will always agree on the

OS and device type classification. The main reason is
that most of the devices, given their OS, tend to have
unique Parameter-Request-List. For example, the dif-
ference between MAC OS X and iOS devices is in the
last three options of the parameter-list, which are op-
tions 44, 46 and 47. In fact, these three options corre-
spond to NetBIOS options, and they are present in all
the Windows, Mac OS X and Linux laptops, but not in
any of the smartphone devices. Similarly, option 150,
relevant to TFTP server information, is only present in
DHCP request generated by Cisco VoIP phones.

9.1.1 Multiple OS Machines

In a multiple boot client, the same MAC address
maybe related to different OS. That is because DHCP
protocol is OS dependent the physical address may re-
main the same when the user is booting the system with
different OSs. However, some of the DHCP options will
be OS dependent and the end host will request a new
IP address once it boots with a different OS. We identi-
fied several users that load at different time instances in
different OSs. This was done by continuously observing
the DHCP requests.
Moreover, we identified several Virtual Machines (VM).

That is OSs that have been assigned an IP address and
whose MAC address OUI is related to the VM Hyper-
visor.

9.2 HTTP Web Site Popularity
We also identified the top web sites that the clients

visited. We present the top 20 sites in tables 10 and 11,
in bytes and requests respectively. There are two obser-
vations regarding the user behavior. First, we see that
smartphones make relatively more references to the top
20 sites than laptops, suggesting a tighter pattern of ref-
erence. The second, is that in smartphones we see that
the top 80% of the websites in terms of bytes are related
to the top 20 applications. Those observations could be
relevant, for example, for a CDN service targeted for
smartphones.

9.3 Proxy Cache Details

9.3.1 Caching Metrics

We use the following three metrics to assess cache
effectiveness. The first metric is the request hit rate, i.e.,
the percentage of requests that are served by the cache.
It captures the expected reductions in request response
times. The second metric is the byte hit rate, defined as
the percentage of the bytes that are served by the cache.
It shows the amount of traffic that can be served locally
without going to the origin server. Finally, the third
metric is the actual savings, i.e., the traffic reduction
achieved through caching. Note that savings can be
negative, when caching policies generate more traffic

12

Association Rule (Rule1 ⇒ Rule2)
Device OS Rule 1 Rule 2 Confidence

Laptop Windows Vendor contains ‘MSFT’ List: 1 15 3 6 44 46 47 31 33 249 43 99.18%
List: 1 15 3 6 44 46 47 31 33 249 43 Vendor contains ‘MSFT’ 93.00%

Mac OS X Host contains ‘Macbook’ List: 1 3 6 15 119 252 44 46 47 100.00%
Host contains ‘Macbook’ MAC-Vendor = Apple 100.00%
List: 1 3 6 15 119 95 252 44 46 47 MAC-Vendor = Apple 100.00%

Linux Host contains ‘Ubuntu’ List: 1 28 2 3 15 6 119 12 44 47 26 121 42 100.00%

Smartphone iOS Host contains ‘iPhone|iPad|iPod’ List:1 3 6 15 119 252 100.00%
Host contains ‘iPhone|iPad|iPod’ MAC-Vendor = Apple 100.00%
List: 1 3 6 15 119 252 MAC-Vendor = Apple 100.00%

Android Host contains ‘Android’ Vendor contains ‘dhcpcd’ 100.00%
Host contains ‘Android’ List: 1 121 33 3 6 28 51 58 59 100.00%
List: 1 121 33 3 6 28 51 58 59 Vendor contains ‘dhcpcd’ 100.00%
List: 1 121 33 3 6 28 51 58 59 Host contains ‘Android’ 82.35%
Vendor contains ‘dhcpcd’ Host contains ‘Android’ 60.87%

BlackBerry Host contains ‘BlackBerry’ Vendor contains ‘BlackBerry’ 100.00%
Host contains ‘BlackBerry’ List: 1 3 6 15 100.00%
List: 1 3 6 15 Vendor contains ‘BlackBerry’ 100.00%
Host contains ‘BlackBerry’ MAC-Vendor = RIM 100.00%

Other Cisco VoIP Vendor contains ‘Cisco Wireless Phone’ List: 1 3 6 12 15 28 42 66 149 150 100.00%
List: 1 3 6 12 15 28 42 66 149 150 Vendor contains ‘Cisco Wireless Phone’ 100.00%

Table 9: Common Association Rules for Device Classification

Laptops % Smartphones %
Search Engine 8.51 Online Journal 2 10.30
Social Networking 1 5.89 Search Engine 5.58
Advertising 3.45 Social Networking 1 4.73
Online Journal 1 2.44 Computer Vendor 3.97
CDN 1 1.82 Online Journal 1 3.52
Images Search 1.33 Tracking 2 3.32
News Site 1.12 Advertising 1.67
Analytics 1.11 Undefined IP 1.53
Antivirus Update 1.09 Feeds 1.49
Game 1.04 Video Site 3 1.29
Retail 0.98 Analytics 1.25
Video Site 1 0.89 CDN 1 1.16
Social Networking 2 0.88 Video Site 1 0.85
Tracking 1 0.85 News 3 0.83
Flash Service 0.83 News 4 0.80
News 4 0.81 Social Networking 2 0.79
Advertising 2 0.80 Retail 0.75
Computer Vendor 0.71 Advertising 0.71
Adds 0.66 Images Search 0.64
Online Journal 3 0.56 International 0.62
Total Top 20 35.73 Total Top 20 45.81

Table 10: Top 20 Web Sites (Requests)

Laptops % Smartphones %
Video Site 1 20.15 Computer Vendor 23.8
Computer Vendor 4.54 Video Site 4 16.34
Search Engine 3.99 Video Site 3 11.03
Antivirus Update 3.89 Video Site 2 4.34
Social Networking 1 2.07 Video Site 1 3.42
Online Radio 1 1.93 Search Engine 3.35
Video Site 2 1.86 Online Radio 1 3.09
Software Update 1 1.79 Online Journal 1 2.27
Software Update 2 1.67 Undefined IP 1.60
Images Search 0.87 TV Streaming 1.46
Advertising 2 0.86 Tracking 2 1.42
OS Download 1 0.79 News 1 1.41
University Media 0.78 File Hosting 1.23
Online Journal 2 0.61 Podcast 2 1.22
File Host 0.49 News 2 0.88
Undefined IP 2 0.47 Social Networking 1 0.82
Video Site 4 0.47 Broadcasting 0.73
News Site 0.43 CDN 1 0.6
OS Download 2 0.42 CDN 2 0.57
Retail 0.41 Online Radio 0.48
Total Top 20 47.82 Total Top 20 80.1

Table 11: Top 20 Web Sites (Bytes)

13

that requested by the users.

9.3.2 Proxy Cache Rules

At a high level, an HTTP proxy caches responses,
usually by storing them in a non-volatile memory, and
uses them potentially in the future to generate other
responses. Cached responses are generated from the
locally stored content either without interacting with
the origin server or after consulting with it.
RFC 2616 makes explicit: a) what HTTP responses

cannot be cached, b) how to validate the cached HTTP
responses, and c) how to revalidate cached HTTP re-
sponses that are no longer valid. Note that the cacheabil-
ity rules in the RFC are not inclusive, i.e., HTTP con-
tent can be cached even if it is not explicitly defined
in RFC 2616, as far as it is not in conflict with any of
the rules that define non cacheable content. For exam-
ple, a later RFC (RFC 2965 [9]) clarifies how requests
and responses that contain cookies can be cached. RFC
2616 defines that only responses to requests with GET,
POST or HEAD methods are potentially cacheable. All
other HTTP methods are not cacheable.
In the absence of cache-control headers and the ex-

pires header, an HTTP 1.1 compliant cache can imple-
ment its own caching algorithm for GET, POST and
HEAD requests. For example, most popular caches [27]
follows an HTTP 1.0 compliant caching algorithm. In
other words, in the absence of cache-control and expires,
they will consider requests with ‘?’, ‘cgi-bin’, in the URL
as uncacheable. Similarly for the POST messages. On
the other hand, in the presence of cache-control and ex-
pires, cacheability is dictated by those arguments only.
There are also some additional rules that are left open
for implementation. In order to derive the maximum
potential savings: a) responses with no validator or ex-
piration time are cacheable (RFC 2616 Sec. 13.4 defines
that they may not be cached), and b) responses with
codes 200, 203, 206 that include range or content-range
headers, 300, 301 or 410 are cacheable (RFC 2616 Sec.
13.4 defines that they may be cached).
Cookies and Caching: Our emulator does not con-

sider the presence of cookies when deciding whether a
response can be cached and whether a request can be
served with cached content. This is based on the RFC
2965 which states that set-cookie headers can be used
in public as well as private objects. It is the server’s re-
sponsibility to include additional caching directives in
the HTTP headers in order to enable or disable caching
of HTTP objects with cookies.
Range Requests and Caching: Although HTTP

1.1. defines that is optimal to cache request content-
range headers, our emulator determines differences in
requests based on the reported ranges. Thus a cache
hit means that both the URL and the byte ranges need
to match.

Exceptions for Video Caching: Currently, many
popular video streaming Web sites make their video
non-cacheable across multiple users by attaching user-
specific information in their video file URLs. For exam-
ple, YouTube video file URLs include various metadata
related to user preferences as well as keys unique to each
user. Using the full URL as an object name prevents
effective caching given that the same video file results in
different URLs when accessed by different users or even
when it is downloaded from different CDN servers. For
this reason, we have developed a number of exceptions
when dealing with major video contributors (YouTube,
Google Video, Daily Motion) that allow caching of video
content. This feature is available in other proxies such
as Squid [6, 27]. More specifically, rather than refer-
ring to each video using its full URL, we use only the
part of the URL that uniquely identifies a video file.
In addition, for video file responses that have cache-
control:private headers, we ignore those headers and we
assume that the video file can be cached publicly.

14

