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Abstract—Proximity-based Services (PBS) require high detec-
tion accuracy, energy efficiency, wide reception range, low cost
and availability. However, most existing technologies cannot
satisfy all these requirements. Apple’s Bluetooth Low Energy
(BLE), named iBeacon, has emerged as a leading candidate in this
domain and has become an almost industry standard for PBS.
However, it has several limitations. It suffers from poor proximity
detection accuracy due to its reliance on Received Signal Strength
Indicator (RSSI). To improve proximity detection accuracy of
iBeacons, we present two algorithms that address the inherent
flaws in iBeacon’s current proximity detection approach. Our
first algorithm, Server-side Running Average (SRA), uses the path-
loss model-based estimated distance for proximity classification.
Our second algorithm, Server-side Kalman Filter (SKF), uses
a Kalman filter in conjunction with SRA. Our experimental
results show that SRA and SKF perform better than the current
moving average approach utilized by iBeacons. SRA results in
about a 29% improvement while SKF results in about a 32%
improvement over the current approach in proximity detection
accuracy.

Index Terms—Location Based Services, iBeacons, Internet of
Things, Proximity Detection, Kalman Filter

I. INTRODUCTION

Location Based Services (LBS) are services provided to
users based on their location. Such services require either
identifying the user’s exact location, known as micro-location,
or obtaining a rough estimate of the user’s distance to a certain
Point of Interest (PoI) known as proximity-based services
(PBS). The basic requirements of PBS are high proximity
accuracy, energy efficiency, wide reception range, low cost and
availability. For PBS, the estimation error of user’s proximity
to the POI must be limited within certain bounds, preferably
within one meter [1]. Different technologies have been used for
proximity detection including WiFi [2], Radio Frequency Iden-
tification Devices (RFIDs) [3], and Ultra Wideband (UWB).
However, these technologies are not primarily intended for
PBS and do not fulfill the aforementioned requirements.

Bluetooth Low Energy (BLE) is a viable technology for
PBS. While different BLE-based solutions are available for
PBS [4], a reliable solution requires modifying the BLE stack
to accommodate proximity specific protocols and optimiza-
tions that are currently not part of BLE. Google’s Eddystone
and Apple’s iBeacon are two such widely used protocols that
are based on BLE and optimized to provide PBS. Our paper

focuses on iBeacon protocol as it is the industry standard for
PBS [5], but our algorithms can also be used with Eddystone
based system. The BLE devices using iBeacon protocol are
also called iBeacons or beacons. iBeacons periodically trans-
mit a universally unique identifier (UUID) that is picked up
by the user’s mobile device. Once the user device obtains a

Fig. 1: Working principle of the iBeacon
UUID, it contacts a server to inquire about the UUID and
the event associated with the iBeacon. The server responds
back with relevant information and can trigger an event such
as responding back to the user with a discount coupon or
opening a security door based on the user’s proximity to the
door. Figure 1 shows the working principle of the iBeacon.
Since energy efficient and long range BLE is available in
modern smart phones, iBeacons would be feasible for PBS if
the proximity detection accuracy could be improved to satisfy
the requirements for PBS.

In iBeacon-based systems, the strength of the received
signal (from iBeacons) at the user device is used as an estimate
of how close the user is to the beacons. The user’s proximity
to the beacon is classified into any of the four zones given
in Table I. Different applications could potentially use any
of the aforementioned zones to provide PBS. It is therefore
fundamental to accurately compute the user’s proximity to
the iBeacons. A user who enters a store such as ‘Starbucks’
and is in the ‘immediate‘ zone of the counter, could avoid
lengthy queues by leveraging his accurate proximity to the
iBeacons. The user can confirm the order through his smart-
phone and pay for the order based on his proximity. Such
service is only possible with accurate proximity estimation
and the proximity error being within certain bounds. Because



PBS are primarily provided in indoor environments that are
prone to noise due to the presence of obstructions, Apple’s
CoreLocation Framework reports a moving average of RSSI
values received from beacons to reduce fluctuation. However,
the moving averaged RSSI values fluctuate drastically due to
noise and cannot consequently produce an accurate estimate
of the actual distance. Therefore, the estimated proximity can
be erroneous and not suitable for PBS. Another inherent flaw
in iBeacon’s current proximity detection approach is that the
users are classified into different zones based on specific RSSI
values, i.e. it is assumed that all the indoor environments
behave identically, but this is unrealistic and further detriorates
the performance of beacon based PBS.

To improve the detection accuracy of the iBeacon-based
proximity services, we developed two new server-based algo-
rithms that incorporate moving average and Kalman filter to
improve the proximity detection accuracy of an iBeacon based
system. We propose to leverage the computational power of
the server, and not the device, for running the algorithms to
reduce the energy consumption of user device, and to exploit
the greater computing power of servers. Our first algorithm, the
Server-side Running Average (SRA), suitable for environments
with less interference noise (in less crowded places such
as coffee shops or small stores with fewer WiFi Access
Points (AP)), improves the proximity detection accuracy of
iBeacons by 29% when compared with the current moving
average based approach used today by Apple’s CoreLocation
Framework. Our second algorithm, Server-side Kalman Filter
(SKF), is suitable for large spaces with greater interference
noise (typically in more crowded space with a higher number
of WiFi APs) and is a modified version of SRA, improves
proximity detection accuracy by 32% over Apple’s current ap-
proach. We have open sourced the aforementioned algorithms
along with an end to end micro-location framework1 to solicit
feedback, and to enable collaborations and contributions from
the research and corporate community.

The paper is structured as follows: Section II discusses
related work. Section III describes our proposed server-based
algorithms. Section IV presents our experimental setup and
obtained results. Section V presents a detailed discussion of
our obtained results. Section VI presents our conclusions.

II. RELATED WORK

A. Related Work

Kumar et al. [6] presented an indoor localization system
called Ubicarse that emulates large antenna arrays on user
devices through a novel formulation of Synthetic Aperture
Radar (SAR). Ubicarse is favorable in terms of accuracy for
both micro-location and proximity based services. However,
the energy consumption of the Ubicarse localization is high
and it requires its users to rotate their devices for localization
purposes [6]. Furthermore, the user device must have at least
two antennas to emulate large antenna arrays. Klokmose

1https://github.com/ipapapa/IoT-MicroLocation

TABLE I: The classification of proximity zones based on
distance between the user and the iBeacon

Zone Distance
Immediate <1 m
Near 1-3 m
Far >3 m
Unknown Device not ranged

et al. [2] proposed a WiFi proximity detection system for
mobile web applications that is based on proximity adaptive
HTTP responses. This approach, despite its low cost, can
only provide proximity based services if the user device is
generating traffic [2]. Furthermore, WiFi also lacks the neces-
sary accuracy required for proximity detection as described by
Ghose [7], and is not energy efficient. Bolic et al. [3] proposed
a novel RFID device called ”Sense-a-Tag” (ST) for detecting
and decoding backscatter signals from different tags in its
vicinity. The proposed ST can be incorporated in a standard
RFID system to improve proximity detection accuracy for IoT.
However, the range of RFIDs is a major challenge particularly
in large spaces. Ghose et al. [7] proposed a mobile-based
system that leverages the Bluetooth capabilities of mobiles
for proximity detection. A new path-loss model that takes
the mobile orientation into account to improve the system
performance is described in [7].

The drawbacks of these technologies is that they are not
primarily focused on accurate and energy efficient PBS. In
contrast, iBeacon technology is more suited for proximity
detection. In our prior work [8], we used iBeacons to provide
indoor localization services to any user. We used Particle
filtering to track the location of a user with a localization error
as low as 0.97 meters. In this paper, we describe two novel
server-based proximity detection algorithms that respectively
leverage moving average and Kalman filter to improve the
accuracy of an iBeacon-based proximity detection system. To
the best of our knowledge, this is the first attempt to improve
the proximity detection accuracy of iBeacons using Kalman
filters.

III. OPTIMIZING THE PROXIMITY DETECTION
ACCURACY OF IBEACONS

To overcome the problems with the current approach used
by iBeacons for proximity classification, we propose two
server-based alternatives. Below we describe our algorithms.

A. Server-side Running Average (SRA)

In our first algorithm, Server-side Running Average, we
collect the RSSI values from the beacons using the user device
and report them to a server. Rather than using RSSI directly as
a measure of the user’s proximity to any specific beacon, we
relate it with distance using the path-loss model as described
by Kumar in [9] and given in Equation 1. In this equation, n
represents a path-loss exponent that varies in value depending
on the environment, d is the distance between the user and the
beacon, d0 is the reference distance which is 1 meter in our
case, and C is the average RSSI value at d0.

RSSI = −10 n log10(d/d0) + C (1)



Once the path-loss model is obtained, it efficiently character-
izes the behavior of RSSI at different distances resulting in an
accurate distance estimate. We believe that using a path-loss
model that reflects the characteristics of the environment will
improve the proximity detection accuracy as compared with
the current approach. To account for the drastic fluctuations
in the RSSI, the user is classified in a proximity zone only if
three consecutive measurements obtained from the iBeacons
classify him in that position through the estimated distance
obtained using path-loss model. Algorithm 1 shows the SRA
algorithm.

Algorithm 1 Server-side Running Average
1: procedure SERVER-SIDE RUNNING AVERAGE
2: Obtain a path-loss model PL using site survey
3: D0 ← 0 . Initial distance
4: P0 ← Unknown . Initial proximity
5: Load RSSIrecv . RSSI values received from sensors
6: RSSIfilt ← RSSIrecv . iOS filtered RSSI values
7: Di ← D0 . Distance at sample i
8: Pi ← P0 . Proximity at sample i
9: P ← P0 . Classified proximity

10: while RSSIfilt 6= 0 do
11: Di ← PL(RSSIfilt)
12: Pi ← Proximity(Di) . Zones using Table I
13: if Pi is in zone x for i= t-2,t-1,t then
14: P ← Pi

15: else P ← P

B. Server Side Kalman Filter (SKF)

Our second algorithm, Server-side Kalman Filter, is a
modified version of SRA and utilizes Kalman Filtering [10],
[11] to reduce the fluctuation in the RSSI as shown in Figure
2. Since proximity is a mere estimation of location rather than
exact position, we chose a Kalman filter over a particle filter
due to reduced complexity. Using this approach, RSSI values
from the beacons are received by the user device which are
then forwarded to the server that uses Kalman filtering to
reduce signal fluctuations. The smoothed RSSI values are then
converted into a distance value using the path-loss model. Like
SRA, the proximity is reported in a particular zone only if
three consecutive measurements obtained from the iBeacons
indicate the proximity of the user to the beacon to be in that
zone. This means that the proximity decision for any specific
samples depends on the two samples preceding it.

Our Kalman filter based RSSI smoother is based on the
work of Guvenc [11]. The state xi that in our case consists
of RSSI and rate of change of RSSI, at time i is a function
of the state at time i − 1 and the process noise wi−1 which
is given mathematically by Equation 2. The obtained RSSI
measurements zi at instant i from the iBeacons is a function
of the state at i−1 and the measurement noise vi as given by
Equation 3 as described in Arulampalam [10].

xi = f(xi−1, wi−1) (2)

zi = h(xi−1, vi) (3)

TABLE II: Kalman filter parameter notation

Symbol Meaning
x State vector
z Measurement/observation vector
F State transition matrix
P State vector estimate covariance or Error covariance
Q Process noise covariance
R Measurement noise covariance
H Observation matrix
K Kalman Gain
w Process noise
v Measurement noise

The traditional Bayesian based approach consists of the pre-
diction and update stage as described by Guvenc [11] and is
given below:

1) Prediction Stage

p(xi|z1:i−1) =

∫
p(xi|xi−1)p(xi−1|z1:i−1)dxi−1 (4)

2) Update Stage:
p(xi|z1:i) = p(zi|xi)p(xi|z1:i−1)

p(zi|z1:i−1) (5)
where

p(zi|z1:i−1) =
∫
p(zi|xi)p(xi|z1:i−1)dxi (6)

We assume that both the process noise and measurement noise
are Gaussian and the functions f and h in Equations 2 and 3
are linear. Because of the linearity assumption, we can apply
a Kalman filter since it is the optimal linear filter.

Due to the aforementioned assumptions, Equations 2 and 3
can be rewritten as described by Guvenc [11]

xi = Fxi−1 + wi (7)

zi = Hxi + vi (8)
where wi ∼ N(0, Q) and vi ∼ N(0, R). Table II lists the
parameters of a Kalman filter. The prediction and update stages
for the Kalman filter as described by Guvenc [11] are

1) Prediction Stage:
x̂ī = Fx̂i (9)

Pī = FPi−1F
T +Q (10)

2) Update State:
Ki = PīH

T (HPīH
T +R)−1 (11)

x̂i = x̂ī +Ki(zi −Hx̂ī) (12)
Pi = (I −KiH)Pī (13)

The higher the Kalman gain, the higher will be the influence
of the measurements on the state. The prediction and update
steps are recursive in nature. For the purpose of filtering the
RSSI values, we utilize a state vector xi that consists of the
RSSI value yi and the rate of change of RSSI ∆yi−1 as given
below.

xi =

[
yi

∆yi

]
∆yi is dependent on the environment and signifies how
drastically RSSI value fluctuates. The higher the noise in the
environment, the higher will be the fluctuation. The current
value of RSSI yi is assumed to be the previous RSSI yi−1

plus the change ∆yi and process noise wy
i . Hence Equation 7



Fig. 2: Proposed Kalman filter-based proximity detection

can be written as[
yi

∆yi

]
=

[
1 δt
0 1

] [
yi−1

∆yi−1

]
+

[
wy

i

w∆y
i

]
(14)

which means that the state transition matrix F is given by

F =

[
1 δt
0 1

]
The parameter δt is to be adjusted as per the variation in RSSI
which depends on the environment. For our set of experiments,
δt was taken as 0.2 (using trial and error). Similarly, Equation
8 can be rewritten as[

zi
]

=
[
1 0

] [ yi
∆yi

]
+
[
vyi
]

(15)

The observation matrix H is given by
H =

[
1 0

]
Parameters P, Q and R used in the experiments were obtained
using trial and error, and are given below.

P = 100I22, Q = 0.001I22, R =
[
0.10

]
The Kalman filter, once calibrated, effectively smooths the
RSSI values. The smoothed RSSI values were then input into
the path-loss model to obtain distances between the iBeacons
and the user, and the user’s proximity to the beacon was
classified in any of the aforementioned zones. Algorithm 2
shows SKF.

IV. EXPERIMENTAL RESULTS
To evaluate the detection accuracy of our two algorithms,

we placed a Gimbal Series 10 beacon in two different rooms
(for cross validation) which are 11m × 6m (environment 1 or
e1) and 8m × 4m (environment 2 or e2) in dimension. The
rooms, due to the infrastructure inside, replicate a typical real
world scenario in which beacons are utilized. The transmission
interval for the beacons was set at 100ms. We used an iPhone
6s plus running the latest iOS version 9.2 and Bluetooth
V4.2 as the user device. The iPhone, placed horizontally on a
tripod stand, was loaded with our prototype application. Our
prototype application primarily has two main functionalities;
micro-location (used in our prior work [8]) and proximity-
based services. This application can listen to several beacons
in its vicinity and then classify them into locations based on
the RSSI value. An Intel core-i5 Macbook-pro with 8GB of
RAM, running Apache Tomcat 8.0 and Java 1.8 was used as
the server to run the SRA and SKF algorithms.

To obtain the path-loss models for our environments, we
put the beacon in a fixed position and noted the average
RSSI values on a user hand held device for a number of
distances starting from 0 meter up to 7 meters. We collected
and averaged 22 RSSI samples at each location. As shown

Algorithm 2 Server-side Kalman Filter
1: procedure SERVER-SIDE KALMAN FILTER
2: Obtain a path-loss model PL using site survey
3: D0 ← 0 . Initial distance
4: P0 ← Unknown . Initial proximity
5: Load RSSIrecv . RSSI values received from sensors
6: RSSIfilt ← RSSIrecv . iOS filtered RSSI values
7: Di ← D0 . Distance at sample i
8: Pi ← P0 . Proximity at sample i
9: P ← P0 . Classified proximity

10: while RSSIfilt 6= 0 do
11: RSSIfilt ← KalmanFilter(RSSIfilt)
12: Di ← PL(RSSIfilt)
13: Pi ← Proximity(Di) . Zones using Table I
14: if Pi is zone x for i= t-2,t-1,t then
15: P ← Pi

16: else P ← P

in Figure 3a and 3b respectively, we plotted distance vs.
average RSSI and then used Matlab’s curve fitting function
to estimate a curve for distance vs RSSI in both environment
1 (e1) and environment 2 (e2). The path loss parameters with
95% confidence interval (CI), obtained through curve fitting
for both e1 and e2, are listed in Table III.

TABLE III: Path loss parameters for environment 1 (e1) and
environment 2 (e2)

Parameter e1 e2
Value 95% CI Value 95% CI

n 0.9116 (0.827,0.996) 1.246 (1.139,1.354)
C (dBm) -62.78 (-64.07,-61.05) -60.95 (-62.24,-59.66)
R2 0.9915 0.9926

Using the above values in Equation 1, we obtained Equation
16 to obtain the distance from the beacons using RSSI values
in environment 1. Similarly for environment 2, we obtained
Equation 17 to obtain the distance from the beacons using
RSSI values. Table IV lists the average RSSI values at different
distances from the beacons along with the actual distance,
computed distance and the estimation error for environment
1 and 2 respectively.

d = 10( 62.78+RSSI
−9.116 ) (16)

d = 10( 60.95+RSSI
−12.46 ) (17)

Using these models, we evaluated the performance of SRA
and SKF and used the current approach of moving averaging of
RSSI values as the benchmark. To evaluate the performance of
the current approach, we put the beacon in a fixed position and



TABLE IV: An insight into the estimation error of the fitted
curve for environment 1 and 2

Average RSSI Actual Dist. Computed
Dist. (m)

Error (m)

e1 e2 e1 e2 e1 e2
-26.8692 -23.1034 0.0001 0.0001 0.009 0 0.0008
-59.9565 -61 1 0.4901 1.0093 0.5099 0.0093
-64.4782 -67.3448 2 1.5357 3.2601 0.4643 1.2601
-67.6086 -67.9655 3 3.3861 3.6563 0.3861 0.6563
-68.4347 -68.5 4 4.1717 4.0359 0.1717 0.0359
-69.437 -69 5 5.3705 4.4266 0.3705 0.5734
-70.5652 -69.9310 6 7.1452 5.2576 1.1452 0.7424
-72.2173 -69.4827 7 10.8457 4.8396 3.8457 2.1604
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Fig. 3a: Curve fitting for RSSI values at distances from 0 to
7 meters in Environment 1

0 1 2 3 4 5 6 7
−80

−70

−60

−50

−40

−30

−20

Distance (meters)

A
ve

ra
g

e 
R

S
S

I (
d

B
m

)

RSSI vs Distance Fitted Curve

 

 

RSSI vs distance 
Fitted curve

Fig. 3b: Curve fitting for RSSI values at distances from 0 to
7 meters in Environment 2

noted the estimated proximity at different distances. During
our experiments, we tested the models only in the ‘immediate’,
‘near’ and ‘far’ regions since the ‘unknown’ region is of no
practical use. We obtained the user’s proximity using the three
different approaches at a distance of 0, 0.6, 1.8, 2.4, 4.3,
and 5.5 meters. These distances, in contrast with Table IV,
are chosen such that we have two evaluation points in each
proximity zone. We took 20 RSSI samples at each physical
location where each RSSI sample consists of the running
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Fig. 4: Average Proximity Detection Accuracy of three algo-
rithms

average of 10 RSSI values (Apple reports RSSI after every
1 second while our gimbal beacon transmitted every 100ms).
For every proximity zone, we took 40 samples (20 samples ×
2 distances) resulting in 120 (3 zones × 40 samples for each
zone) RSSI samples for each approach.

To compare SRA, SKF, and the current approach, we used
a three class confusion matrix which is one of the popular
methods used for evaluating the performance of classification
models [12]. The matrix compares the actual classification
with the predicted or estimated classification. Table V lists
the parameters of the utilized confusion matrix as described by
Fawcett in [13] and provides their description in context of our
experiment. Table VI contains confusion matrix statistics ob-
tained for SRA and SKF along with the current approach used
as the benchmark for both environment 1 and environment 2.
Table VII shows the proximity error at different distances in
different proximity zones for environment 1 and environment
2 respectively. The SRA and SKF have 0% error in the
‘immediate’ zone compared to the 47.5% and 37.5% observed
using the current approach in environment 1 and environment
2 respectively. Figure 4 shows the average proximity detection
accuracy of the two proposed approaches in both environments
in comparison with the current approach used as the bench-
mark. Our algorithms, SRA and SKF, outperform Apple’s
current approach for proximity detection both in environment
1 and environment 2.

V. DISCUSSION

Figures 3a and 3b show that our curve-fitted path-loss model
in environment 1 and 2 respectively can accurately estimate the
distance between any user and beacon using the RSSI values.
The R2 value of 0.9915 and 0.9926 highlight the accuracy of
the fitted models. These results are also confirmed by Table IV.
The average error between the actual distance and estimated
distance is 86.14 cm and 67.98 cm for environment 1 and
environment 2 respectively.

The results in Table VI highlight the improvements that are
attained using SRA and SKF in comparison with the current



TABLE V: Different parameters used in confusion matrix

Parameter Description
True Positive (TP) When the user is in zone ‘x’ and is classified in zone ‘x’
True Negative (TN) When the user is not in zone ‘x’ and is not classified in zone ‘x’
False Positive (FP) When the user is not in zone ‘x’ but is classified in zone ‘x’
False Negative (FN) When the user is in zone ‘x’ but is not classified in zone ‘x’
Precision/ Positive Predic-
tion Value (PPV)

The fractions of samples classified in zone ‘x’. Mathematically, precision = TPi
TPi+FPi

where i is any zone.

Sensitivity/Recall The fraction of samples correctly classified in zone ‘x’. Mathematically, sensitivity = TPi
TPi+FNi

. The higher the
sensitivity, the better will be the algorithm.

Specificity The fraction of samples correctly classified in any zone other than zone ‘x’. The higher the specificity, the better
will be the algorithm. Mathematically, specificity = TNi

TNi+FPi
.

Fall out/False Positive
Rate (FPR)

Mathematically, FPR = 1-specificity = FPi
FPi+TNi

. The lower the FPR value, the better will be the algorithm.

False Negative Rate
(FNR)

Mathematically, FNR = FNi
FNi+TPi

. The lower the FNR value, the better will be the algorithm.

False Discovery Rate
(FDR)

A good indicator for conceptualizing the rate of type I error. Mathematically, FDR = 1 - PPV = FPi
FPi+TPi

. The
lower the FDR value, the better will be the algorithm.

Accuracy The fraction of samples correctly classified. Mathematically, accuracy = TP+TN
TP+TN+FP+FN

∀ zones.

TABLE VI: Statistical metrics for the current approach, SRA and SKF in environment 1 (e1) and environment 2 (e2)

Metrics
Immediate Near Far

Current SRA SKF Current SRA SKF Current SRA SKF
e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2

TP 21 25 40 40 40 40 18 16 38 37 39 38 40 40 33 39 38 40
TN 80 80 78 80 79 80 61 65 73 79 78 80 58 56 80 77 80 78
FP 0 0 2 0 1 0 19 15 7 1 2 0 22 24 0 3 0 2
FN 19 15 0 0 0 0 22 24 2 3 1 2 0 0 7 1 2 0
PPV 1 1 0.952 1 0.975 1 0.486 0.516 0.844 0.973 0.951 1 0.645 0.625 1 0.928 1 0.952
Sensitivity 0.525 0.625 1 1 1 1 0.45 0.4 0.95 0.925 0.975 0.95 1 1 0.825 0.975 0.95 1
Specificity 1 1 0.975 1 0.987 1 0.762 0.812 0.912 0.987 0.975 1 0.725 0.7 1 0.962 1 0.975
FPR 0 0 0.025 0 0.012 0 0.237 0.187 0.087 0.012 0.025 0 0.275 0.3 0 0.037 0 0.025
FDR 0 0 0.047 0 0.024 0 0.513 0.483 0.155 0.026 0.048 0 0.354 0.375 0 0.071 0 0.047
FNR 0.475 0.375 0 0 0 0 0.55 0.6 0.05 0.075 0.025 0.05 0 0 0.175 0.025 0.05 0

TABLE VII: Comparison of proximity detection error of SRA and SKF in comparison with current approach in environment
1 (e1) and environment 2 (e2)

Actual Distance (m)
Error at Different Distances (%) Error in Different Zones (%)
Current SRA SKF Current SRA SKF
e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2

Immediate 0 0 0 0 0 0 0 47.5 37.5 0 0 0 00.6 95 75 0 0 0 0

Near 1.8 10 20 10 0 5 0 55 60 5 7.5 2.5 5.02.4 100 100 0 15 0 10

Far 4.3 0 0 5 5 0 0 0 0 17.5 2.5 5 05.5 0 0 30 0 10 0

approach. The higher value of the true positives and true
negatives for both SRA and SKF indicates that our algorithms
can accurately detect the user’s location in any particular zone.
The lower value of false positives and false negatives for both
SRA and SKF in comparison with the current approach means
that our algorithms do not falsely detect or reject a user in
a particular zone. Similarly, the sensitivity values for SRA
and SKF are higher than the current approach in both the
‘immediate’ and ‘near’ zones. The higher sensitivity values
mean that both SRA and SKF are more sensitive and able
to detect the user in a particular zone as compared to the
current approach. SKF performs better than SRA as well.
The improved proximity detection of SRA and SKF is also
highlighted by the lower FDR, FNR, and FPR values. The
high FNR value for the current approach in the ‘immediate’
and ‘near’ zone means that the current approach is not suitable

for these zones. Furthermore, the high FDR value for the
current approach in the ‘far’ zone means that it is more likely
to incorrectly classify the user’s proximity in the ‘far’ zone.
This is why the zero error in ‘far’ zone for current approach,
given in Table VII, is not significant as it is due to the inherent
flaw in the current approach.

In Table VII, a proximity error of 95% and 75% respectively
for the current approach at 0.6 meters (which falls in the
immediate region) means that for 19 (environment 1) and 15
(environment 2) out of 20 samples collected at this distance,
the current approach was not able to accurately classify them
into the ‘immediate’ zone. The average error of 47.5% and
37.5% for the current approach in the ‘immediate’ region of
environment 1 and 2 respectively, means that for the 40 sam-
ples collected in this region, only 21 samples in environment
1 and 25 samples in environment 2 were correctly classified.



This shows the current approach is not favorable for PBS.
SRA and SKF, on the other hand, have 100% accuracy in the
‘immediate’ zone in both environments. In the ‘near’ region,
error for the current approach is 55% and 60% for environment
1 and 2 respectively while it is 5% and 2.5% for SRA and
SKF respectively in environment 1 and 7.5% and 5% in
environment 2. This means that out of 40 samples, the current
approach accurately classified only 18 samples and 16 samples
in environment 1 and environment 2 respectively, which is
far less than the 38 and 39 samples accurately classified by
SRA and SKF respectively in environment 1 and 37 and 38
samples accurately classified by SRA and SKF respectively in
environment 2.

Based on the results in Tables VI, VII, and Figure 4, our
SRA and SKF approaches outperform the current approach
in the ‘immediate’ and ‘near’ zones, which is primarily used
for triggering PBS in most of the beacon-based applications.
The current approach, due to the inherent flaw of not taking
the environmental factors into account, classifies most of the
samples in the ‘far’ region, which is why there is no detection
error in the ‘far’ zone for the current approach (the high FDR
value in Table VI proves this fact). This is also the cause of
higher detection error in the ‘immediate’ and ‘near’ regions
for the current approach. As shown in Figure 4, the current
approach achieved a proximity detection accuracy of 65.83%
and 67.5% in environment 1 and environment 2 respectively.
SRA achieved 92.5% and 96.6% proximity detection accuracy
which is 26.7% and 29.1% improvement over the current
approach in environment 1 and 2 respectively. SKF achieved
a proximity detection accuracy of 97.5% and 98.3%, which
improves proximity detection accuracy by almost 31.6% and
30.8% over the current approach in environment 1 and en-
vironment 2 respectively. The figure indicates that out of 120
samples, only 79 and 81 were properly classified by the current
approach in environment 1 and environment 2 respectively,
which is much lower than the 111 and 116 correctly classified
by our approach SRA in environment 1 and environment 2
respectively, and 117 and 118 samples correctly classified
by our approach SKF in environment 1 and environment 2
respectively.

The increased accuracy of both SRA and SKF in two
different environments makes it a viable alternative to the
current approach. The improved performance of current ap-
proach, SRA and SKF in environment 2, when compared with
environment 1, is due to less noise in environment 2 as evident
from Figure 3b and lower values of C in Table III. Based on
the obtained results, it is evident that use of the proposed
algorithms SRA and SKF improves the proximity detection
accuracy of iBeacons and enhances their performance for
providing reliable proximity based services.

VI. CONCLUSIONS

Proximity-based services can be leveraged in different lo-
cations including airports, retail stores, hospitals and stadi-
ums etc. However, the current technologies cannot fulfill the
accuracy, energy consumption, range, cost and availability

requirements for PBS. iBeacon, the industry standard for PBS,
currently lack the accuracy to be utilized for efficient and
accurate PBS. In this paper, we proposed two server-based
algorithms that improved the proximity detection accuracy of
an iBeacon based proximity solution by handling the inherent
limitations of the current approach utilized by Apple for
proximity classification. We used the current approach as
a benchmark that resulted in proximity detection accuracy
of 65.83% and 67.5% in environment 1 and environment 2
respectively, while the Server-side Running Average (SRA)
achieved 92.5% and 96.6% proximity detection accuracy
in environment 1 and environment 2 respectively, which is
26.7% and 29.1% improvement over the current approach. The
Server-side Kalman Filter (SKF) achieved proximity accuracy
of 97.5% and 98.3%, that is 31.67% and 30.8% improvement
over the current approach in environment 1 and environment
2 respectively.
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