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Abstract—Prior work in the Cloud domain has mainly focused
on evaluating systems using synthetic workloads. Nonetheless,
synthetic workloads are not always an accurate depiction of the
real-world as they have been generated based on assumptions and
statistical distributions that are not representative of the actual
traffic that flows from the applications and microservices to the
lower layers of the Cloud infrastructure. Moreover, the selection
of diverse assumptions and distributions create additional compli-
cations on a fair comparison between platforms and reduces the
ability to reproduce the experiment. In this paper, we compare
synthetic workloads used in prior research with the Eucalyptus
cloud traces. We find that the distributions employed in the
synthetic workloads are not always in-line with the real usage
pattern. Therefore, to deliver realistic and reproducible research
outcomes, we propose a trace-driven research methodology and
showcase an experimental design which employs a workload
trace and simulation method. The experiment provides practical
suggestions from a realistic input and environmental setting. In
addition, it is straightforward to replicate the experiment so
that the accepting process of research outcome is shorted by
a practical implementation.

I. INTRODUCTION

Cloud computing is becoming the standard of IT infras-
tructure and replacing the traditional on-promise deployment
paradigm. Three levels of service in cloud computing are
abstracted as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS) [1]. At
the IaaS layer, the infrastructure resources such as computing,
network, storage, etc. are provided in a flexible and on-demand
manner to the cloud tenant. Thus the end user can provision
virtual machines (VMs), Random Access Memory (RAM),
virtual switches, or storage volumes on an as-needed and a
when-needed basis. Similar operations are also performed in
the container domain, where a microservice requests a Linux
container (LXC) with specific resources. This can remove the
hurdles of maintaining on-premise hardware infrastructure, or
the VMs themselves in the container world.

The IaaS cloud providers usually maintain several data
centers for resource isolation. Hence, many challenges can
potentially emerge, such as how to improve the performance
and provide competitive Service Level Agreements (SLAs) in
a multi-tenant environment [2], or how to maximize resource
utilization on limited hardware resources [3], [4]. Solving
these challenges can help the cloud provider to increase their

Fig. 1. Common Workflow of Cloud Resource Management Experiment

market share and business profit. Several techniques have been
proposed to address these issues [5]. Among them, a number
of studies have focused on the infrastructure resource manage-
ment problem [2], [3], [6]–[8]. To showcase the effectiveness
of each proposed technique, researchers developed an exper-
imental or simulation platform and conducted a quantitative
comparison.

In many cases, we had to rely on synthetic workloads gen-
erators [9] and simulation frameworks to perform these exper-
iments. It is not always feasible to have an ideal experimental
environment where a large number of cloud production-like
microservices operate on the testbed. The common workflow
of IaaS resource management experiment is shown in Fig.
1. The synthetic workload generator produces every field
in a resource request based on assumptions and statistical
distributions. Then the synthetic requests are submitted to
the resource scheduler and make placement decision in a
simulated or real infrastructure cluster.

However, several of the empirical assumptions for statistical
distributions are made due to the lack of published character-
ization work of real IaaS cloud workload. A similar problem
was identified in the Ethernet domain. Prior to the seminar
paper [10], most prior studies used Markovian models which
are amenable to accurate analysis and efficient control. Hence,
this may result in an enormous diversity of results. Different
decisions on workload assumptions and distributions also bring
extra variables, making it hard for other researchers to replicate
the experiments. Some work has been done on examining the
reproducibility of simulation methodology [6], [11]. However,
to our knowledge, the same question has not been raised on
the synthetic workload used in IaaS cloud research.



Therefore we decided to look into the synthetic workload
and explore the answer to the reality and reproducibility prob-
lem. First, we discuss and review the synthetic workloads used
in prior IaaS resource management research and introduce
a newly published real-world workload trace (Section II).
By conducting an in-depth comparison (Section III), we find
that there are some gaps between the statistical distributions
used in synthetic workloads and real-world workloads. We
showcase a trace-driven experiment example (Section IV) to
illustrate how we can deliver realistic and reproducible results
by taking advantage of real-world traces. We evaluate re-
source utilization performance of several resource scheduling
algorithms that are based on bin packing heuristics and their
variants. Our simulation experiments reveal that there is still
a room for further improvement in the resource utilization of
production cloud system. A realistic reproducible experiment
may accelerate the adoption process from research outcome to
practical system.

II. IAAS CLOUD WORKLOAD

Normally a workload represents the input, i.e. a stream of
operation events submitted by a client or an application to
a system. In the IaaS cloud setting, the operation event is
the infrastructure resource request. The cloud user is able to
perform a resource operation at anytime given the on-demand
nature of cloud computing. An IaaS cloud workload commonly
consists of three basic fields:

1) Start time: It specifies the time when a request, or a batch
of requests are submitted. In synthetic workload, the
time interval between two continuous requests, i.e. inter-
arrival time, is used to substitute the arrival time so that
it can be generated from certain statistical distribution.

2) Termination time: It specifies the time point when a
resource release request for previously provisioned re-
source is submitted. The termination time and start time
decide the lifespan of an allocated resource. In synthetic
workload, this field is normally replaced by lifetime or
duration for the convenience of generating from a certain
distribution.

3) Requested resources: The quantity of each requested
IaaS resource, such as CPU core, memory, storage
volume. The IaaS resource is generally provided in the
form of virtual machine, storage volume, or an isolated
resource like a container. In synthetic workload, a couple
of VM configurations are defined for selection.

In the following subsections, we introduce two main cate-
gories of IaaS cloud workload: synthetic workload and real-
world trace based workload.

A. Synthetic Workload

As mentioned before, a synthetic workload is the most
popular workload in cloud scheduling research. It has been
employed as the input of many experiments. Each field in
the synthetic workload request is generated based on a pre-
defined statistical distribution and assumptions. In this section,
we provide a quick review of the distributions and assumptions

used in prior synthetic workloads. We select synthetic work-
loads from three prior work that are published after 2010 as
examples. They are:

• Two workloads used for evaluating a power optimizing
resource scheduler [6].

• Two workloads used in a performance evaluation study
for VM placement algorithms [12].

• One workload used in a backward speculative placement
scheduler [7].

These synthetic workloads are all utilized as input in the
evaluation experiments. Their distributions and VM type con-
figurations are listed in Table I.

To generate the inter-arrival time and lifetime, the synthetic
workload generator made different choices on selecting statis-
tical distributions for the workloads in Table I. They chose
an Exponential, Lognormal and Poisson distribution with
different mean parameters for the synthetic inter-arrival time.
Furthermore, Pareto distribution employed by the workload
generator in [12] is added to the lifetime distribution list, also
with different parameters. It’s worth noting that all these work-
loads do not provide any source or reference to explain why
a certain statistical distribution is chosen with that particular
distribution parameter as the basis for generating a workload
parameter. They simply made assumptions on data distribution.
On VM resources generation, the requested resource in all
synthetic requests in [6] are 1 core VM. The other workloads
created more than one VM types for selection. However,
two workloads in [12] chosen a VM type uniform randomly
from all available types, the remaining workloads made choice
based on pre-defined probability with no explanation. Another
implicit assumption is all VM types follow the same inter-
arrival time and VM lifetime distribution.

The reason behind the current method of selecting a
statistical distribution for a synthetic workload is the lack
of published observations and characterization of real-world
workloads. Therefore, researchers have to make decisions
based on empirical observations from related fields [13].
Hence, this makes it hard to validate the synthetic workload
and reproduce the experiment [11]. To the best of our knowl-
edge, the assumption that the distributions of other computing
workloads can be applied on IaaS cloud workload has not been
verified. Moreover, it is difficult to make a fair estimation of
a real performance improvement when the research outcome
is implemented in a production system with a real-world
workload.

B. Real-World Workload

Real-world workload traces are captured from various pro-
duction systems and are publicly available for further inves-
tigation. People are able to take advantage of these traces to
provide insights of system performance and usage pattern. For
example, Abdul-Rahman et al. [14] analyzed user behavior
and created system models based on Google cluster data
set [15]. The statistical distributions concluded from Google
cluster traces are referenced as the basis of many subsequent
cluster management research. However, in the field of IaaS



TABLE I
SYNTHETIC WORKLOADS USED IN SELECTED PREVIOUS RESEARCH

Workload Inter-arrival Time Lifetime Requested Resource

Pucher et al. [6]
1 Exponential (mean=80sec) Exponential (mean=500sec)

1 core VM
2 Lognormal (µ=3.8, σ=1.0) Lognormal (µ=4.5, σ=1.0)

Mills et al. [12]
1

Exponential (mean=30min)
Pareto (mean=8 hours) Random (uniformly) choose from 7

VM configurations2 Pareto (mean=4 hours)

Calcavecchia et al. [7] 1 Poisson (mean=5 time unit) Poisson (λ=110 time unit)
Random choose from

4 VM configurations based on pre-defined
probability of [0.3, 0.25, 0.25, 0.2]

TABLE II
SUMMARY OF EUCALYPTUS WORKLOAD TRACE

Trace Duration (days) VM created Host Cores/Host

DS1 85 9173 13 24

DS2 283 900 7 12

DS3 279 2600 7 8

DS4 94 1436 12 8

DS5 33 8456 31 32

DS6 34 4157 31 32

cloud research, system log and workload trace are rarely
publicly available. Commercial cloud providers usually treat
such information confidential.

Eucalyptus cloud trace [16] was made available in 2014
and updated in 2015. Eucalyptus is an open source IaaS
cloud computing framework [17], which is developed by
Eucalyptus Systems Inc. The Eucalyptus cloud trace dataset
consists of six workload traces which are captured from six
production enterprise private cloud deployments. These cloud
deployments host different types of workloads from software
development and testing to product demonstration and sales.
Each trace dataset represents the operation history of resource
events happened in a single Eucalyptus availability zone. Each
event records the timestamp, event type (Start/Stop VM) and
VM resource requested (only in Start event). The VM types
are configured based on different CPU cores. The traces also
provide the VM instance id in every event so that we can match
the Start and Stop event for a particular VM. Moreover,
it contains the original VM scheduling decision made by
production scheduler. The description of trace datasets is
shown in Table II.

III. COMPARISON BETWEEN SYNTHETIC AND
REAL-WORLD WORKLOAD

In this section, we present an in-depth multi-dimension
comparison between the synthetic workloads and Eucalyptus
workload traces. The goal is to figure out whether the synthetic
workloads are able to reflect the workload pattern in the real-
world.

A. Workload Comparison

We compare two types of workloads in terms of the three
basic parameters in IaaS cloud workload: inter-arrival time,
VM lifetime and VM type.

TABLE III
DISTRIBUTION FIT RESULT

Exponential Lognormal Poisson

Inter-arrival time µ = 2611 µ = 5.27, σ = 2.57 λ = 2611

VM lifetime µ = 44740 µ = 7.04, σ = 1.99 λ = 44740

Fig. 2. CDF of VM inter-arrival time of Eucalyptus traces

We first show the Cumulative Distribution Function (CDF)
of the VM inter-arrival time from Eucalyptus workload in Fig.
2. We aggregate the inter-arrival time from six traces and plot
the CDF for each VM types. We also plot a CDF of all VMs.
The distributions of different VM types are similar. We can
only see slight difference of 8 and 12 cores VM. We also
observe that approximately 40% VM provision requests are
submitted at the same time, i.e. 0 inter-arrival time. Then we
try to fit three statistical distributions that are listed in synthetic
workloads of Table. I on aggregated data of all VMs. The fit
result is shown in Table. III. By comparing the distribution
parameters, we can easily notice that there is a significant
distinction between synthetic workload distributions and real-
world workload. The synthetic workloads generate new VM
requests much faster than the real distribution.

Unlike the inter-arrival time, VM lifetime presents diverse
CDF which means different VM types have different distri-
butions when we look at the VM lifetime distributions of
Eucalyptus workloads in Fig. 3. This observation invalidates



Fig. 3. CDF plot of VM life time in six traces

Fig. 4. The VM Type Distribution in Six Traces

the assumption made in synthetic workloads that all VM types
follow the same distribution. Moreover, the distribution fit
result, shown in Table. III, indicates the synthetic VM lifetime
is much shorter than the real-world workload.

Lastly, we compare the VM type distribution in the work-
loads. Figure 4 depicts the percentage of each VM type in six
Eucalyptus workload traces. Again, we can see a distinct per-
centage distribution on each workload trace. For example, one
core VM takes up more than 80% in DS1 trace whereas only
up to approximately 50% in the remaining traces. Moreover,
four cores VM accounts for over 90% VM in DS4 trace. The
only common pattern we can conclude from Fig. 4 is that the
small VM (cores ≤ 4) accounts for more than 90% of total
VM created in all six traces. Although synthetic workloads
also have a variety of VM types, they either select a VM type
for a request based on uniform probability [12] or pre-defined
probability [7]. In contrast, real-world trace suggests that the
probability of each VM type varies in different deployments.

B. Discussion

Through the comparison between the parameter distribution
of synthetic workloads and Eucalyptus workload traces, we

observe major differences and assumptions on synthetic work-
loads that may not be valid in our traces. In fact, it is challeng-
ing to choose an accurate statistical distribution to represent
cloud user activity patterns in all scenarios. An early investi-
gation [18] on Eucalyptus workload trace characterization has
pointed out that there is no distribution that can achieve high
goodness of fit, i.e. pass the Kolmogorov-Smirnov test, for VM
lifetime or inter-arrival time in DS1−DS3 traces. Similarly,
Abdul-Rahman et al. concluded that the formal statistical
distribution fits for resource configuration is unclear based
on Google cluster trace [14]. Our findings on six Eucalyptus
workload traces also confirm this conclusion.

IV. REALISTIC AND REPRODUCIBLE EXPERIMENT
METHODOLOGY FOR IAAS CLOUD RESEARCH

In this section, we showcase a realistic and reproducible
simulation experiment on IaaS resource scheduling problem.
We replay the Eucalyptus workload traces as the simulation
input thus the experiment is reproducible and can be cross-
validated. The validity and effectiveness of such trace driven
simulation has been proved in many related computational
fields [19], [20].

The experiment aims to evaluate the performance of several
resource scheduling algorithms. Generally, the on-demand
IaaS cloud resource scheduling problem can be formalized as
the online bin packing problem [8]. The virtualization host
is treated as bins with limited space. A set of balls with
different sizes, i.e. VM with different resource demand, need
to be allocated in the bins. The objective is to use as fewer
bins as possible. Fewer bins or active hosts means energy and
cost saving. The online property indicates that the placement
scheduler has no knowledge of incoming balls which match
the nature of cloud on-demand resource provision.

Many heuristics have been developed for solving the NP-
hard bin packing problem [21], such as Best F it and
First F it. The Best F it algorithm always place the next
incoming ball in the most utilized bin, of course, it should
have enough empty space to place the ball. While First F it
perform a linear scan on the bin set and select the first bin that
has enough empty space as placement destination. We also
consider dynamic resource scheduling approach which has
been proved effective in improving infrastructure resource uti-
lization [5]. When a VM is terminated, the dynamic scheduling
is triggered to see whether it is possible to migrate all VMs
in an under-utilized host to other active hosts. If possible, we
can perform VM migration and turn sleep the source host
to further reducing power consumption. When choosing a
migration destination for a VM, the dynamic scheduler also
utilizes the basic heuristics.

A. Simulation Design

We simulate an IaaS cloud test-bed consisting of a number
of virtualization hosts for each Eucalyptus workload trace.
We only configure the CPU resource of the virtualization
host because it is the requested resource recorded in the
workload trace. Based on the VM type definition in Eucalyptus



cloud, other resources such as memory and disk capacity
of a VM are determined by the VM core [17]. The VM
types are distinguished according to their CPU core count.
The simulated cluster and hosts for each workload trace are
configured based on Table. II.

In this experiment, we compare the resource utilization
performance of five scheduling algorithms: Best F it (BF ),
First F it (FF ), their migration enabled variants (BFm and
FFm) and the scheduling algorithm used in original traces.
We measure the number of active virtualization hosts in the
cluster over time and the average CPU utilization of active
hosts. These two metrics are able to reflect the effectiveness
on maximizing resource utilization and minimizing power
consumption of a scheduling algorithm. In addition, we also
measure the number of VM migrated during simulation. It
is known that VM migration comes with performance degra-
dation [22]. Although people are working on reducing the
performance impact during migration, the negative effect still
cannot be ignored for now. The smaller number of migrated
VM means less performance degradation of running VM.

The advantage of this approach over the same with a
synthetic workload, is that the reproducibility and cross-
validation. Moreover, there is no need to repeatedly perform
the test and calculate statistical measurements such as con-
fidence interval in a trace-driven experiment. The request
streams recorded in the trace are deterministic and real. One
can easily replicate the trace-driven experiment with the same
scheduling approaches and simulated or real test-bed to reach
the exact same conclusion.

B. Evaluation Result

Fig. 5 shows the changes on a number of active virtu-
alization hosts over time. The lower the line indicates the
better resource utilization under the same workload. Each
subfigure represents the simulation result for a workload trace.
We can easily observe that original trace utilize the largest
number of active hosts, especially under heavy workloads
(DS1, DS5, DS6). All hosts in the cluster are activated in
most of the time. In the contrary, heuristic based algorithms are
able to save nearly 1

3 active hosts in DS5, DS6 workloads and
even up to 60% at the beginning phase of DS1. In the result
of other less heavy workload (DS24), the heuristic based
algorithms perform better than the trace scheduling algorithm.
When we compare the heuristic based algorithms, they do not
present a huge distinction like before. The difference in the
number of active hosts is limited in the range of one or two
hosts. This is because both Best F it and First F it have
the same upper bound, 1.7 times optimal number of used bins
[21].

Then we present the CPU utilization results Table. IV. Not
surprisingly, the utilization rate of trace scheduling result is the
lowest in all six simulations. By applying the heuristic based
algorithms, the average CPU utilization can be improved by up
to 30%. Similarly to the active hosts’ result, the difference be-
tween heuristic based algorithms is relatively small. However,
we noticed that the migration enabled heuristics BFm and

TABLE IV
AVERAGE HOST CPU UTILIZATION RESULTS

DS1 DS2 DS3 DS4 DS5 DS6

BF 82% 66% 47% 75% 78% 90%

FF 78% 64% 48% 74% 80% 86%

BFm 84% 67% 49% 75% 82% 90%

FFm 82% 65% 49% 74% 82% 87%

Trace 49% 55% 25% 63% 58% 66%

TABLE V
MIGRATED VM COMPARISION RESULT

DS1 DS2 DS3 DS4 DS5 DS6

BFm 246 43 69 0 32 67

FFm 268 60 77 5 42 105

FFm outperforms basic heuristics in most cases, although the
improvements are less than 5%. When we check the number of
migrated VM in Table. V, comparing to the thousands of VM
created in each trace, only a small portion of VM experienced
migration for both algorithms. And the less VM migrated by
BFm compare to FFm because BFm take into account the
resource utilization factor when making initial placement and
migration decisions.

Based on the above observations, we can conclude that there
is still a large potential of utilization improvements in pro-
duction systems. The heuristic based algorithms are emerging
techniques in academia but are rarely applied in real platforms.
Even the basic heuristics are able to significantly increase the
resource utilization without sacrificing the VM performance.
One reason could be that the designer of a practical system are
conservative on implementing new techniques unless they have
solid evidence of improvement based on realistic workload.
Reproducible trace-driven experiments are able to provide such
evidence with real-world workload trace.

V. CONCLUSION

In this paper, we raise the question of how we can deliver
realistic and reproducible outcome in IaaS cloud resource man-
agement research. By comparing the statistical distributions
used in synthetic workloads with Eucalyptus workload trace,
we identified a number of gaps such as time distributions
with incorrect parameters and assumptions. Due to the fact
that the real workload is hard to be modeled, we suggest that
trace-driven experiment is preferable for generating a realistic
and reproducible outcome. We showcase a trace-driven and
simulation-based performance evaluation experiment for sev-
eral resource scheduling algorithms. It is straightforward to
replicate the experiment with the same trace input and same
test bed configuration. Therefore, new techniques developed
by research community can be easier to be implemented in
practice.
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