
Multi-Dimensional Scheduling in Cloud Storage
Systems

Zhihao Yao
Computer and Information Technology

Purdue University
West Lafayette, Indiana 47906

Email: yao86@purdue.edu

Ioannis Papapanagiotou
Computer and Information Technology

Purdue University
West Lafayette, Indiana 47906
Email: ipapapan@purdue.edu

Robert D. Callaway
Cloud Solutions Group

NetApp, Inc.
RTP, North Carolina 27709

Email: bob.callaway@netapp.com

Abstract—The increasing demand for elastic and scalable
cloud block storage requires flexible and efficient ways to pro-
vision volumes. The scheduling of volume requests in physical
storage nodes or virtualized storage pools is usually based on
a single criterion, such as the available capacity or the number
of volumes per backend. Those properties are exposed to the
cloud block storage scheduler through drivers, and may vary
based on the workload. Hence, most cloud storage providers
refrain from describing Service Level Objectives (SLOs). In this
paper, we present the design and implementation of a new
scheduling algorithm for block storage systems that has the
following advantages over the currently implemented scheduler
in OpenStack. It provides guaranteed SLOs even in a dynamic
workload, it increases the I/O throughput of the volumes that
have been already provisioned in the backend systems, it can be
scalable to a higher arrival rate for the volume requests, and
finally it can minimize the number of active hosts (or else the
energy consumption). The volume placement process is based
on an APX-hard multi-dimensional Vector Bin Packing (V BPd)
algorithm. In order to reduce the complexity we propose a
heuristic named Modified Vector Best Fit Decreasing (MVBFD).
Our scheduler design for block storage systems is based on the
principles of the OpenStack’s Cinder scheduler; hence it can be
deployed with only minor modifications to an OpenStack block
storage deployment.

Keywords—Cloud Storage, Infrastructure as a Service, Resource
Scheduling, Vector Bin Packing

I. INTRODUCTION

Cloud computing has gained immerse popularity as a
paradigm for the dynamic provisioning of computing services
deployed on virtual machines (VM). The cloud infrastructure,
otherwise called infrastructure as a service (IaaS), allows
high flexibility, availability, reduction of hardware cost, and
operational expenses. At the same time, the cloud can store and
process vast amount of data generated by the tenants, hence
being useful for a number of industries e.g. healthcare [1]. In
cloud storage there are three main categories on how the data
can be stored: (a) ephemeral storage: data is stored on the
provisioned VMs and is lost after the reboot or the release of
that VM; (b) block storage: data is stored in a persistent block-
level storage space (i.e. volume) which is able to be attached
or detached to a VM with a lifetime that is separate from
the VM itself. Typical utilized capacity is in the low TBs; (c)
object storage: objects and files are written to multiple disk
drives spread throughout servers in the data center and can
be accessed through service API from all cloud Services. A

typical usage includes 10s of TBs of data storage.

As applications and databases deployed on the cloud grow
over time, there is an eventual need to increase the storage
capacity. Adding physical storage or upgrading to a storage
system with higher capacity requires high capital investment
and cannot be scalable. Cloud block storage offers a reliable,
high-performance, on-demand storage for applications hosted
on the cloud. In addition, it can support resource-hungry
workloads seamlessly, and can scale very fast by just asking for
more space, i.e. a volume extend request. However, the prob-
lem of scheduling storage requests in a manner that maximizes
the use of resources, minimizes the energy consumption and
maintains the Service Level Agreements (SLA) between the
tenant and the cloud service provider has not been properly
studied. This problem becomes even more relevant, as new
open source IaaS solutions, like OpenStack [2], are being
deployed in commercial practice by more than 200 companies.

A great amount of work has been devoted in optimizing
management of a data center. Most studies have focused on
the optimal VM placement in data centers [3], or energy aware
VM allocation [4]. Some more recent studies have focused
on adding SLA during the VM placement process [5], or
optimizing the job completion time in big data clusters [6].
In our recent work [7], we proposed an SLA-aware resource
scheduling for cloud storage, assuming one request per unit
time. Hence, the problem could be solved with relatively sim-
ple scheduling operations. The main objective of this work is
to present our vision, and discuss the research challenges in the
volume allocation in cloud storage systems that are comprised
of multiple storage entities and multiple requests on a unit
time. We develop a dynamic scheduling algorithm that can
provide efficient and rapid allocation of volume requests, and
minimize the number of backend systems in the cloud storage
infrastructure. More specifically, we design a scheduler based
on multi-dimensional Vector Bin Packing (V BPd), where d
is the number of resources that the scheduler can use, such
as capacity, I/O through etc. The problem is equivalent to
given balls and bins with sizes Rd, multi-dimensional bin
packing assigns the balls to the fewest number of bins. This
is done to maximize the volume allocation, and minimize the
number of used backend systems. While the problem is APX-
hard [8], which means that there is no asymptotic polynomial-
time approximation scheme (PTAS) for the problem, unless
P = NP . Several heuristics can be adopted to solve this
problem [9]. However, these heuristics consider balls of a fixed



size and therefore the problem of volume request allocation
with multiple sizes is totally different. At the same time, to
the author’s knowledge, such ideas have not been applied in
cloud storage systems. In summary, our work aims to:

• Develop a scheduling framework that is modular
enough and can be integrated in cloud infrastructure
platform for block storage;

• Schedule volume request to backend system, or a pool
of scheduling resources, considering multi-dimension
property including available space and I/O throughput;

• Manage the performance of block storage infrastruc-
ture in terms of utilization, energy and SLO mainte-
nance.

The paper is organized as follows: In Section II, we present
the background information and the OpenStack scheduling
process for block storage. In Section III, we present new
scheduling approaches, and in Section IV, we perform a
simulation analysis. Finally, in Section V, we conclude our
work, and present our future directions.

II. BLOCK STORAGE IN CLOUD

1) Background on block storage SLAs: Block storage
aims to provide reliable, high-performance, on-demand and
persistent storage capacity for various cloud applications. In
general, the storage capacity can be accessed in the form of
virtualized logical volumes. The block storage system manages
the creation, attaching and detaching of these volumes to VMs
which are usually provided by the computing service. To
deploy block storage service in cloud infrastructure requires
building a dedicated storage server cluster. A storage node
or backend system often consists of a number of hard drives
in the form of RAID to provide redundancy and massive
storage capacity. In some cases, Solid State Drive (SSD) or
customized SSD [10] are used to meet the critical requirement
of I/O performance. The storage service can be accessed via
a predefined service API so that the cloud tenant is able to
send request to create, attach, detach or migrate the volume
on demand.

The block storage service on the cloud also needs to
meet the needs of customers. This is guaranteed from a legal
document, i.e. the SLA. The SLA is the entire agreement that
specifies what service is to be provided, how it is supported,
times, locations, costs, performance, and responsibilities of
the parties involved. The level of each service in the SLA
is described as an SLO. SLOs are specific measurable charac-
teristics of the SLA such as availability, throughput, frequency,
response time, or latency. In the occasions that the block
storage provider, fails to achieve the SLA, a penalty is applied
on the income. In the cloud storage domain, there are generally
two kinds of SLOs: availability SLO and performance SLO.
The availability SLO specifies the level that the cloud service
must be accessed successfully during the contract period or
the period defined by the provider. For instance, in Amazon’s
Elastic Block Store (EBS) [11], there is a guaranteed SLA
of a monthly up-time performance at least 99.9%. Similarly,
other cloud storage providers have set really high standards on
the provided availability SLO. The performance SLO limits
the lowest bound of data transition speed on storage platform.

Fig. 1. System Components of OpenStack Cinder’s Service

Fig. 2. Filtering and Weighting in Cinder’s Scheduling

The most common unit of performance SLO in block storage
is Input/Output Operations Per Second (IOPS). Compared to
the availability SLO, performance SLO is hardly ever disclosed
by any cloud block storage provider. In some occasions, the
cloud storage providers may claim that their service is able to
deliver a consistent baseline of X IOPS/GB without disclosing
a specific SLO in their SLA.

2) OpenStack Cinder: As the most popular open source
cloud infrastructure framework, OpenStack is collaborating
developers and cloud computing technologists producing the
ubiquitous open source framework for public and private
clouds. The community and more than 200 companies have
joined the development of OpenStack. The project aims to
deliver solutions for all types of clouds by being simple to im-
plement, massively scalable, and feature rich. The technology
consists of a series of interrelated projects/services delivering
various components for a cloud infrastructure solution [2].

In OpenStack, the block storage service is named Cinder.
Cinder virtualizes pools of block storage devices and provides
end users with a self service API to request and consume
those resources without requiring any knowledge of where
their storage is actually deployed or on what type of device.
An overview of the Cinder architecture is shown in Fig.1.
The cinder-scheduler module is responsible for scheduling and
routes requests to the appropriate volume service running on
storage entity.

Fig.2 shows the scheduling in OpenStack. It works in



two steps: (i) filtering and (ii) weighting. When the Cinder
Filter Scheduler receives a request for a logical volume, it
first applies filters to determine which hosts are eligible for
consideration when dispatching a request. The filter’s decision
is binary: either a host is accepted by the filter, or it is
rejected. It is based on capabilities of the host, namely free
space, location and I/O throughput. The default scheduling
policy in Cinder is the capacity scheduler. Once the scheduler
receives a volume request, it filters out the hosts which do
not have sufficient capacity and create a list of eligible hosts.
Then the weight of each host is calculated based on the
available capacity. The scheduler selects the host with the
largest available capacity as the best candidate to serve the
request.

A pool is a logical concept that describes a set of storage
resources that can be used to serve core Cinder requests, e.g.
volumes/snapshots. This notion is almost identical to Cinder
volume backend or storage node from the Cinder scheduling
perspective, for it has similar attributes (capacity, capability).
The main difference is that a pool cannot exist on its own;
it must reside in a volume backend. One volume backend
can have multiple pools but pools cannot expose sub-pools
to Cinder (meaning even they have, sub-Pools do not get
exposed to Cinder, yet). The workflow of this recent change
is as follows: 1) Volume backends report how many pools and
what those pools look like and are capable of to the scheduler;
2) when a request comes in, the scheduler picks the most
appropriate pool to serve the request; it passes the request
to the backend where the target pool resides; 3) the volume
driver gets the message and lets the target pool serve the
request as the scheduler instructed. Each pool is also a separate
schedulable entity, which means the schedulable object from
the Cinder scheduler’s perspective is no longer limited to a
physical machine. To accommodate this feature, the scheduler
has to have great scalability to schedule up to thousands of
storage entities.

The Cinder scheduler plays a crucial role in the resource
management of block storage services. Nonetheless, there are a
number of limitations in the current scheduling approach. First,
the default capacity-based scheduling algorithm has not been
evaluated in terms of performance. For example, there might
be cases in which the storage nodes can be overloaded by many
read and write I/O operations, therefore their ability to serve
future demands may be limited. The scheduler unaware of this
status may schedule a volume request to be served by the entity
with more available capacity, but overloaded in terms of the I/O
operations. Moreover, the current approach does not consider
the case in which competing volume requests arrive in the same
time slot. Hence, if the request arrival rate is high, it may lead
to suboptimal allocation, SLO violation, higher energy usage
and therefore higher operating expenses. Third, the scalability
of the current implementation has not been investigated. The
scheduler needs to deliver the capability of fast scheduling,
cost efficient balancing, and scalability to the cloud storage
platform.

III. OPTIMIZATION PROBLEM AND SOLUTION

The goal of the resource allocation is to map volume
requests, where each volume represents a tuple containing
several dimensions, into a number of storage nodes or pools.

In our formulation, we consider each storage entity, as a bin,
the dimensions, as its properties, and the goal is to maximize
the utilization of a single entity and minimize the number of
entities that must be used to serve all the volume requests,
respecting the properties and capabilities of the storage entities.
This problem is NP-complete [12] and can be solved through
Linear Programming (LP) or heuristics.

A. Problem Description

In order to create the LP formulation of the volume request
allocation problem, we define two variables: (i) yk ∈ {0, 1},
equals to 1 if a scheduling entity (storage node or pool) k ∈ K
is used, and 0 otherwise; (ii) xkv ∈ {0, 1}, equals to 1 if the
volume v ∈ V is provisioned to a storage entity k ∈ K, 0
otherwise. Hence the objective function can be expressed as
follows:

min
∑
k∈K

yk

subject to:
∑
k∈K

xkv = 1 ∀v ∈ V

and
∑
v∈V

ukdxkv ≤ ckdyk ∀d ∈ D,∀k ∈ K

where ukd is the utilization of dimension d on a node k and
ckd is the maximum available resources of dimension d. The
objective function aims at minimizing the number of required
storage entities. The constraints with the ckd guarantee that
each volume request demand does not exceed the appropriate
capacity on each dimensions d.

B. Heuristics

The volume placement process can be treated as a Vector
Bin Packing Problem (V BPd), where the d-dimension rep-
resents the capabilities of the storage entity across different
dimensions, e.g. CPU and IOPS, memory and disk usage,
network throughput, etc. These capabilities are measured at
the current (or last) time epoch t and exposed to the scheduler.
Therefore, the assignment should ensure that the number of
nodes is minimized while no capability constraint (i.e. SLO)
is violated. Let us assume V volumes {I1, I2, ..., IV }, where
each Ii ∈ Rd. A valid packing is a partition of the V volumes
in K sets (or storage entities) B1, ..., BK , where for each
storage entity j and for each dimension i,

∑
l∈Bj

I li ≤ 1.
In our problem d ≥ 2, the vector bin packing problem
is known to be APX-hard, which means that there is no
asymptotic polynomial-time approximation scheme (PTAS) for
the problem, unless P = NP [8].

In reality, the volume requests arrive one at a time in
unknown order and the scheduler has to make the decision
immediately. The optimization goal is to minimize the number
of storage entities used. The simplest approach would be
to allocate the volumes to the fullest entity that still has
enough resources based on the requested properties. One can
naturally observe that this would result to a greedy algorithm
that follows the principles of the online bin packing problem.
This algorithm is often referred to as Standard Best Fit (BF)
[13]. BF is guaranteed to find an allocation with at most
17
10 · OPT + 1 entities (where OPT is the number of bins
given the optimal solution) [14]. To adopt this heuristic in the



volume allocation scenario, we transform the problem to an
offline version of BF, Best Fit Decreasing (BFD), and propose
a Modified Vector BFD (MVBFD) algorithm that take into
account the aforementioned higher dimensions. The dilemma
that online bin packing algorithm usually have is it is difficult
to pack large items properly, especially if they arrive late
in the sequence. This situation can be circumvented by pre-
sorting the input sequence or sub-sequence and packing the
large item first, which is the offline BFD algorithm. BFD is
able to achieve at most 11

9 · OPT + 4 nodes [15]. In our
implementation, the MVBFD is applied by changing the way
of triggering scheduling algorithm. The MVBFD algorithm no
longer runs based on first come first serve model. It is triggered
periodically. The volume requests that arrive in a short period
are stored in a message queue, i.e. Advanced Message Queuing
Protocol. The MVBFD is able to sort the requests in decreasing
order before allocating them.

Algorithm 1 Modified Vector Best Fit Decreasing (MVBFD)
Input: hostList, volumeList
Output: : Volume Request Allocation

for all v in volumeList do
calculate w(I)

end for
for all b in hostList do

calculate w(B)
end for
volumeList.sortDecreasing(w(I))
hostList.sortDecreasing(w(B))
for all v in volumeList do

for all b in hostList do
candidateHost← NULL
for all d in dimensions do

if b.d.getUtil() + v.d < b.d.getReource() then
candidateHost← b

else
candidateHost← NULL
break

end if
end for

end for
if candidateHost 6= NULL then

allocate v to candidateHost
calculate new w(B) of candidateHost
update hostList

end if
end for

In order for the proposed heuristic to be modular, we
propose to make the weighter decision based on a scalar that
is produced as a weighted sum across the dimensions i.e.
w(I) =

∑
i≤d αiIi. The vector ~α = α1, ..., αd is a scaling

vector that defines the coefficients based on the importance of
each dimensions. For example the cloud storage provider may
wish to have a higher weight on the I/O throughput compared
to thw network throughput to decrease the energy footprint or
satisfy an SLO. For simplicity we set the ~α elements to 1 [16]
and assume each volume request is independent of each other.

In Algorithm 1, we show the pseudo-code of the imple-
mented algorithm. The worst case complexity of the algorithm
is O(n·j ·d), where n is the number of volumes in the message

list, j is the number of storage hosts and d is the number of
resources that are taken into account. The volume requests
and storage hosts are sorted based on their weight. Then we
check the hosts that can support the volume request. Given the
multidimensional nature of the volume request, all dimensions
must be satisfied. Once a volume request is allocated on a host,
the algorithm recalculates the weight of that host and update
the order of host list.

IV. PERFORMANCE ANALYSIS

In this section, we discuss the performance analysis of
the cloud storage heuristic presented in the previous section
compared to the default scheduler implementation in Open-
Stack Cinder. As the system under evaluation is an IaaS
it is essential to achieve repeatability of experiments under
different circumstances. For this reason, we have chosen to
use simulations to evaluate the performance of the proposed
heuristics. We developed a simulator in Java to simulate a
storage cluster. The source code will be open-sourced for
public validation in the future. We implemented both the
proposed scheduling algorithm, as well as the default Cinder
scheduling algorithm in our simulator.

A. Performance Metrics

We use three metrics to evaluate the performance of
proposed scheduling algorithm and default scheduler in Open-
Stack.

1) SLO violation: The SLO violation occurs when the
cloud service can not achieve the service objective as
promised. We gather data for the availability SLO
violation rate and the I/O throughput performance
SLO violation rate respectively. The availability SLO
violation rate is calculated by the number of failed to
be scheduled requests divided by the total number
of arrival requests. The I/O performance violation
happens when a volume is running at a speed that
lower than I/O performance SLO.

2) Volume speed performance: This metric includes two
aspects: I/O speed that an active volume is running at
and available I/O speed that a storage entity can pro-
vide to the next allocated volume. Cloud customers
always expect their volumes could run faster. On the
other hand, it is also important for cloud provider to
offer fast enough performance to the next customer.

3) Number of Active Nodes: We count how many storage
host are actually used to serve volume requests. The
unused hosts are turned sleep or suspend mode to
save energy and maintenance cost.

B. Experimental Setup

The simulator’s deployment scenario is based on commer-
cial off-the-shelf (COTS) hardware proposed by Rackspace
[17]. We assume a fairly standard load of 70% reads and 30%
for all volume requests, and 8K of IO block size. A single hard
drive is able to achieve 175 IOPS. We use the RAID calculator
[18] and find that the maximum I/O throughput per storage
host is 8800 IOPS. The storage hardware characteristics are
described in Table I. In our evaluation, the scheduler takes
into account two dimensions d = 2: the capacity of a



TABLE I. STORAGE HOST HARDWARE CONFIGURATION

CPU/RAM 1 core at 2.0GHz/16GB

Network Interface 10G Ethenet

Hard Drive 600GB SAS 15k rpm

Number of Hard Drives 60

RAID 0+1

Storage Capacity per node 18TB

Cluster Capacity 18 - 36PB

TABLE II. SIMULATION SETUP

Volume size 100GB 500GB 1000GB

Volume Duration 2hours 4hours 6hours

Default Arrival rate 3 requests/second (Poisson Distribution)

I/O Performance SLO 300 IOPS

Cluster Scale 1000 to 2000 nodes

Simulation Length 3 days

Data Sampling Period 12h to 60h

Fig. 3. SLO Violation Rate

host machine and the I/O throughput. While, we could have
used more dimensions, these constraints are two of the most
important factors during the allocation decision making. The
MVBFD algorithm is enabled every 2 seconds. Each volume
request contains three fields: volume capacity, performance
SLO and duration. The volume capacity is randomly generated
based on the following values: 100GB, 500GB, 1TB. The
volume requests arrival time is distributed based on a Poisson
distribution with λ = 3 requests/seconds. Each volume will be
running for 2 hours, 4 hours and 6 hours with a probability of
25%, 50% and 25%, respectively. The data are sampled from
12nd to 60th hour to achieve steady state performance. Each
experiment has been run 10 times and the mean values of the
metrics are calculated. The full list of simulation parameters
are shown in Table II. We scale the storage cluster from 1000
to 2000 scheduling entities, as a single node can export a
large number of pools to the Cinder scheduler. We do not
present lower values, because the system would have reached
saturation give the above workload.

C. Simulation Results

We first present the results for the SLO violation rate. Fig.
3 shows that the Cinder scheduler achieves 0 failed request
i.e. 100% service availability with 1300 nodes, whereas the

Fig. 4. Available IOPS and Volume Speed Performance

proposed MVBFD algorithm has to utilize 1500 nodes to
reach the same goal. However, MVBFD algorithm is able to
accomplish 0% in the I/O performance SLO violation rate,
or else 100% SLO performance is guaranteed independently
on the number of nodes used. On the other hand, the default
scheduler has 80% violation rate with 1300 nodes, and requires
more than 2000 block storage scheduling entities to be able
to achieve an acceptable violation rate. In fact, the default
scheduling policy cannot reach 0% in the violation rate of the
performance SLO even above 2000 block storage scheduling
entities. Hence, the combination of these results shows that the
MVBFD algorithm is able to obtain 0 availability and IOPS
SLO violation with 1500 storage scheduling entities (nodes or
pools).

In Fig.4, we performed an I/O volume speed analysis. The
sub-figure in the top indicates that the MVBFD algorithm
can deliver higher volume I/O throughput to the next volume
request than the default scheduling algorithm. The MVBFD
curve increases linearly after 0 SLO violations when the num-
ber of nodes scale up. This is because the available resources
of the storage pools can be fully utilized by future requests.
In the bottom figure, we present the I/O throughput of the
already active volumes. In this case, the default scheduler has
a small advantage in terms of the I/O access speed compared
to the MVBFD after 1500 pools. However, for lower than
1500 pools, the average speed is lower than the SLO, which is
the reference line in the figure. This means the cloud storage
provider has to pay an SLO violation penalty. On the other
hand, the MVBFD achieves steady performance and the I/O
throughout is always above the the SLO irrespective of the
number of storage nodes. Hence, the benefit of the cloud
storage provider from the MVBFD implementation is that the
available IOPS for future volumes requests can scale better
and as the provisioned resources scale up and down, there is
no negative performance effect on the already active storage
volumes.

Finally, we look into the maximum number of active nodes
used by each scheduling algorithm by varying the λ of the
Poisson distribution from 0.5 to 4. Note that the number of
available nodes in the storage cluster is 2000. Fig.5 shows
that the default scheduler uniformly utilizes all the available



Fig. 5. Number of Active Nodes

nodes at all times, as it is based on allocating the volumes
to the pools/nodes that have the most available capacity. On
the other hand, the MVBFD will allocate the volumes to the
tightest spots, hence it will start with 250 nodes for an arrival
rate of 0.5 requests/second and it will reach saturation around
4 requests/second. In other words, MVBDF utilizes only the
necessary nodes to serve the provided workload. At the same
time, all active nodes fully satisfy the SLO constrains. The
benefit for the cloud storage provider from the implementation
of MVBFD is that fewer nodes are active, hence less power
needs to be consumed as the inactive nodes will be put in
sleep/suspend mode.

V. CONCLUSION

In conclusion, we formulated the volume allocation prob-
lem as a multi-dimensional VBP and optimized based on the
number of active storage entities. In order to solve the problem
we proposed a Modified Vector Best Fit Decreasing algorithm
(MVBFD). The proposed scheduler takes into account multiple
resources, pre-sorts the volume requests that are located in the
messaging queue, apply SLO constraints on each dimension,
and chooses the proper storage node. Our proposal was de-
signed based on the principles of OpenStack so that it can be
easily integrated to most cloud platforms. However, the same
properties could be used in other cloud storage schedulers.
Our simulation based experiment showed that the proposed
MVBFD algorithm regards its performance on SLO mainte-
nance, volume I/O throughput, scalability and the number of
active entities. The results showed a better performance of
our approach compared to the default scheduling algorithm in
OpenStack Cinder. In addition, the MVBFD algorithm reveals
further potential on energy and operation cost reduction.

In summary, the MVBFD scheduling algorithm has demon-
strated excellent standing in terms of resource utilization, SLO
maintenance, scalability, energy and cost efficient. As a future
work, we plan to contribute the scheduling and optimization
policies to the OpenStack Cinder project. At the same time, we
are currently investigating novel optimizations in the backend
systems, and we are planning to deploy the aforementioned
policies in a bare metal hardware infrastructure.

ACKNOWLEDGMENT

The authors would like to thank Ben Swartzlander, architect
at NetApp, for his useful feedback.

REFERENCES

[1] R. Ghosh, I. Papapanagiotou, and K. Boloor, “A survey on research
initiatives for healthcare clouds,” Cloud Computing Applications for
Quality Health Care Delivery, pp. 1–18, 2014.

[2] “Openstack.” [Online]. Available: www.openstack.org
[3] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in

virtualized data center environments,” in IEEE/ACM Int’l Conference
on & Int’l Conference on Cyber, Physical and Social Computing
(CPSCom). IEEE, 2010, pp. 179–188.

[4] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[5] K. Lu, R. Yahyapour, P. Wieder, C. Kotsokalis, E. Yaqub, and A. Je-
hangiri, “Qos-aware vm placement in multi-domain service level agree-
ments scenarios,” in Cloud Computing (CLOUD), 2013 IEEE Sixth
International Conference on, June 2013, pp. 661–668.

[6] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems. ACM, 2013, pp. 351–364.

[7] Z. Yao, I. Papapanagiotou, and R. D. Callaway, “SLA-aware Resource
Scheduling for Cloud Storage ,” in IEEE International Conference on
Cloud Networking (CloudNet). IEEE, 2014.

[8] G. J. Woeginger, “There is no asymptotic PTAS for two-dimensional
vector packing,” Information Processing Letters, vol. 64, no. 6, pp.
293–297, 1997.

[9] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for
vector bin packing,” Microsoft Research, Tech. Rep., 2011.

[10] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “Sdf:
Software-defined flash for web-scale internet storage systems,” in Pro-
ceedings of the 19th international conference on Architectural support
for programming languages and operating systems. ACM, 2014, pp.
471–484.

[11] “Amazon elastic block store.” [Online]. Available:
http://aws.amazon.com/ebs/

[12] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP-completeness. W.H. Freeman and Company, 1979.

[13] L. T. Kou and G. Markowsky, “Multidimensional bin packing algo-
rithms,” IBM Journal of Research and development, vol. 21, no. 5, pp.
443–448, 1977.

[14] M. Yue, “A simple proof of the inequality FFD (L) 11/9 OPT (L)+ 1,
L for the FFD bin-packing algorithm,” Acta mathematicae applicatae
sinica, vol. 7, no. 4, pp. 321–331, 1991.

[15] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham, “Worst-case performance bounds for simple one-dimensional
packing algorithms,” SIAM Journal on Computing, vol. 3, no. 4, pp.
299–325, 1974.

[16] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource
allocation algorithms for virtualized service hosting platforms,” Journal
of Parallel and Distributed Computing, vol. 70, no. 9, pp. 962–974,
2010.

[17] K. Levenstein. (2013) Configuring openstack block storage.
[Online]. Available: https://www.rackspace.com/blog/laying-cinder-
block-volumes-in-openstack-part-2-solutions-design/

[18] Raid performance calculator. [Online]. Available:
http://wintelguy.com/raidperf.pl


