
1

Chunk and Object Level Deduplication for Web
Optimization: A Hybrid Approach

Ioannis Papapanagiotou,Student Member, IEEE, Robert D. Callaway,Member, IEEE,
and Michael Devetsikiotis,Fellow, IEEE

Abstract—Proxy caches or Redundancy Elimination (RE) sys-
tems have been used to remove redundant bytes in WAN links.
However, they come with some inherited deficiencies. Proxy
caches provide less savings than RE systems, and RE systems
have limitations related to speed, memory and storage overhead.

In this paper we advocate the use of a hybrid approach,
in which each type of cache acts as a module in a system
with shared memory and storage space. A static scheduler
precedes the cache modules and determines what types of traffic
should be forwarded to which module. We also propose several
optimizations for each of the modules, such that the storage
and memory overhead are minimized. We evaluate the proposed
system by performing a trace driven emulation. Our results
indicate that a hybrid system is able to provide better savings
than a proxy cache, or a standalone RE system. The hybrid
system requires less memory, less disk space and provides a
speed-up ratio equal to three compared to an RE system.

Index Terms—WAN optimization, Traffic deduplication, Re-
dundancy Elimination, Hybrid Cache

I. I NTRODUCTION

T He exponential growth of mobile data traffic has led
service providers to implement data deduplication sys-

tems. Data deduplication can remove repetitive patterns in
traffic streams, and decrease response times for time sensitive
applications. The most widely implemented technique in wired
networks were proxy caches [1]. Although proxy caches
remove redundancy at the object level, there is a vast amount
of web data that is uncacheable per RFC 2616 [2].

Some recent studies [3], [4], [5] have advocated the benefits
of protocol-independent Redundancy Elimination techniques
(also called byte caches). They can remove redundancy at the
chunk level, which is a much smaller granularity than at the
object level. Hence even if an object or a file is partially
modified prior to being transferred for a second time, the
unchanged parts would still benefit from the optimization.
Initially, chunks were identified inside each packet. However,
in [6] the authors proposed a WAN optimization system that
removes duplicate chunks on top of the TCP layer. TCP based
chunks are bigger than packet based chunks, but smaller than
objects. The advantage of this approach is that it can identify
the redundant bytes even if they span over many packets.

An RE implementation requires the installation of two
middleware boxes; one closer to the server (encoder) and one
closer to the client (decoder). As data flows from the server

The authors are with the Department of Electrical and Computer Engineer-
ing, North Carolina State University, Raleigh, NC, 27695-7911 USA and with
the IBM WebSphere Technology Institute, RTP, NC, USA. Emails:(ipapapa,
mdevets)@ncsu.edu and rcallawa@us.ibm.com.

to the client, it passes through the boxes and is broken into
chunks. The chunks are stored on the persistent storage of
each box. For each chunk, a representing fingerprint (hash)
that maps to the actual chunk is generated and stored in
the memory (e.g. a 1KB stream can be represented by a
collision-free 20B hash). The two boxes communicate through
an out-of-band TCP connection such that the data are delivered
in order. Since both boxes contain the same data, they are
synchronized. A second reference to a chunk would mean that
the encoding box would send the hash value instead of the
actual bytes [3].

In RE systems, fingerprinting is performed based on the
Rabin fingerprinting algorithm [7]. A sliding window moves
byte and byte, generating the fingerprints. Each one of them
is compared with a global constant to derive the boundaries
of each chunk. However, performing these steps over all of
the data may create a bottleneck in higher bandwidth links
[8]. Moreover, the hash overhead per object in proxy caches is
much smaller than the hash overhead per chunk in RE systems.

In this paper, we propose a hybrid redundancy elimination
technique. The proposed system consists of a scheduler, an RE
module and a proxy cache module. The decision on which
module the byte stream should flow through is determined
by the scheduler. The benefits of such an approach can be
summarized as follows:

• Fewer hash computations are performed, therefore al-
lowing our hybrid system to be deployed within higher
bandwidth links.

• An application layer compression scheme, instead of
the standard IP packet-based RE, should lead to better
savings and storage overhead.

• A reduction in the memory overhead compared to a stan-
dalone RE system. As some byte streams flow through
the proxy cache module, they do not need to be broken
in chunks and unnecessary hash generation and storage
can be avoided.

• The proposed approach can be implemented on the
encoding box of a WAN optimization system without
significant architectural modifications.

The remainder of our paper is organized as follows: In
Section II, we describe the proposed system design. In Section
III, we briefly describe the emulation environment and the
dataset that has been used to validate the suggested implemen-
tation. In Section IV, we showcase results on how effective
is the proposed system, under various parameters and criteria.
Finally, in Section V we conclude with our remarks.



2

R

A

M

WAN

Encode 

RE

Encoding MiddleboxDecoding Middlebox

Scheduler

TCP Connection

P
er
si
st
en

t 
St
o
ra
ge

Proxy 

Cache

R

A

M

P
er
si
st
en

t 
St
o
ra
ge

Decode 

RE

Fig. 1. Proposed Architectural Approach of a Hybrid Cache

II. SYSTEM DESIGN

We initially assume a standard architectural approach of an
RE system [3]. The decoding box is located closer to the
access network and the encoding box closer to the server.
The encoding box performs fingerprinting of the byte stream,
indexing and lookup, and data storage. The task of data
reconstruction is performed at the decoding box. The proposed
implementation is shown in Fig. 1. In the encoding middleware
we assume three separate entities (a) the scheduler, (b) the
RE cache (or chunk based cache), and (c) the proxy cache.
The memory and the persistent storage are shared among the
caching modules.

A. Scheduler

The scheduler precedes the two caching modules, and is
responsible to decide whether to forward the flow to the
encoding RE or to the proxy cache or to send the data
unprocessed. The scheduler operates at multiple layers. Itfirst
checks the IP header to identify the protocol. All TCP traffic
is passed to the higher layers for further examination.

For every TCP connection that uses destination port 80, we
look into the bytes of the TCP buffer to determine whether they
contain web data. Once we have performed the application
classification, we process the HTTP headers. Note that HTTP
headers may span multiple packets or may be delivered in the
application layer in different TCP buffer reads. By processing
the HTTP request headers the scheduler determines whether
the object is cacheable or not, based on RFC 2616 [2]. All
cacheable content is directed towards the proxy cache module.
All non-cacheable content is directed towards the RE module,
since there would be no benefit from flowing through the proxy
cache module.

For the remaining TCP and UDP traffic, the scheduler
decides if they will flow through the RE module or they
will not be processed by the hybrid system. However, unless
mentioned specifically, we will assume that the scheduler
decides to send the data unprocessed. We follow this approach
because, for non-web traffic, the RE module could show
additional savings, whereas the proxy cache would not do that.
Therefore for fairness in comparison we will focus on web
traffic optimization. In the last section we will show further
results on other types of traffic.

B. Module Design Principles
1) Proxy Cache Module:In the HTTP proxy cache module

a hash value of the object’s URL (host name and URI), along
with some metadata, is stored in the non-volatile memory.
The object’s content is stored locally on the persistent storage.
When an object is still valid in the proxy cache, it is retrieved
from the cache, otherwise it is fetched from the end server.
The proposed web proxy module is fully compliant with RFC
2616 [2]. This RFC defines several rules and leaves several
others open for implementation. For the latter, we follow the
most recent version of Squid [9] with LRU replacement policy.
However, there are some cases for which we use an optimized
approach compared to Squid.

First, since recent works [10] have indicated that several
users tend to partially download an object (e.g. watch a
small number of seconds from a video and then jump to
another one), we assume apartial downloadingpolicy. In
other words, the proxy cache only stores the portion of the
object that has been already requested by the users (which is
the optimum policy in terms of cache overhead and savings).
This is different from the default policies in Squid, in which
an object is cached only if anx% of the object has been
downloaded (this configurable argument in squid is called
range offset limit).

Second, in many occasions content is provided in fragments
(e.g. smartphone mobile players). The range of each frag-
ment is specified in the HTTP headers, through theRange
Offsetfield (this technique is sometimes referred asadaptive
streaming). The client requests for a specific range, and the
server replies with an HTTP206 Partial Contentresponse.
In these occasions, the URL of the different fragments that
correspond to the same file will be the same. While default
caching policies would not cache fragmented objects, our
proxy cache module is able to parse theRange Offsetand
uniquely identify the objects. Hence, it can cache them and
determine redundancy based on each fragment.

Lastly, the proxy cache module incorporates video opti-
mizations (such as uniquely identifying videos even if their
URLs contain user-related information), similar to the video
cache Squid plugin [11]. For example, accessing Youtube
service is done in two phases: 1) content look-up, 2) content
download and playback. The first phase is performed on the
web browser (or a custom application that embeds Youtube
video) by selecting a video uniquely identified by an 11 byte
videoID. In the second phase, the Youtube video contacts the
Youtube CDN to collect a copy of the video object solely
identified by a 16 bytecacheID. While the PC-player and
Mobile-player may have some differences [10], our proxy
cache module is able to handle those cases from Youtube and
from several other video service providers.

2) RE Cache Module:Our RE system follows theChunk-
Match principles from [5] with some major differences. In
[5] the RE was performed on a per packet basis. A Rabin
fingerprint [7] is generated for every substring of lengthβ. The
base of the modular arithmetic, for generating the fingerprints,
was set to260, such that the collisions among hashes are
minimized. When a fingerprint matches a specified constantγ
(hash mod γ = 0), the fingerprint constitutes a boundary. In



3

Constants
Fingerprint window size β

Module operator for chunk boundaries γ
Minimum chunk size δ

Temporal Parameters
Size of circular TCP buffer M

Chunk size L
Hash size N

TABLE I
RE CACHE MODULE CONSTANTS AND VARIABLES DEFINITION

our case, the fingerprint generation is performed per web ob-
ject. One of the main advantages of this approach is the higher
upper bounds of compression. Assuming a perfect match, the
upper bound of the packet level compression is1− β/MTU ,
whereas in our approach it may reach1− β/object−size.

In the legacy RE approach [3] determining the boundaries
was relatively easy, since packets that contain the same data are
usually of the same size. However, in the proposed approach,
the RE module receives the byte stream through the TCP
socket buffer. In a naive approach, the whole object would be
allocated in RAM, and then processed byte-by-byte. However,
this has problems related to unnecessary memory allocation
(especially for some large objects) and the process of loading
the whole object in the socket buffer and then fingerprinting
the data is serial.

To tackle this issue we use an application layer circular
buffer per TCP connection. For every application call the data
is copied from the socket buffer to circular buffer and the
fingerprints are computed over this byte stream. Assuming a
temporal sizeM of the circular buffer, the total number of
fingerprints per buffer read isM − β + 1. Since the Rabin
algorithm determines the fingerprints in a sliding window
manner, we are aware of the fingerprints from the start of the
circular buffer and up toβ bytes before the end. We remove
all processed bytes, and keep the lastβ−1 bytes in the circular
buffer. Once a new byte stream is available for this connection,
we allocate it after theβ−1 bytes and perform the fingerprint
generation. Hence, the size of the circular buffer per socket
connection must be at least the size of the fingerprint window
size. For fairness in comparison, we have implemented an LRU
policy for the RE module. All hashes are stored in RAM, and
the content in the persistent storage.

Finally for the RE system, we assume a minimum chunk
size, namelyδ. This is because: (a) We want to avoid very
small chunk sizes because the overhead is high. (b) Smaller
chunks tend to contribute much less than bigger chunks in
savings. (c) A smallerδ may decrease the CPU utilization as
the modulo operations, for chunk boundary determination, are
computed only whenL > δ. (d) For security reasons, since an
attacker can flood the RE cache with very small or very big
chunks1. The proper selection for the value ofδ is shown in
section IV.

1The Rabin fingerprint determines the boundaries based on thecontent, any
long sequence of00 would potentially generate a chunk boundary. Another
potential attack is when the intruder is aware of theγ; then he can generate
unnecessary fingerprints.

C. Memory Overhead

The memory overhead is the amount of bytes that need to
be stored in memory. Those bytes are related to the hashes that
point to the disk location, where the actual content is stored.

A hash of the URL along with some metadata are stored
in memory, and the object itself on the persistent storage. The
index entry in Squid is 80B. An optimized indexing method-
ology [12] would not change the overhead considerably.

For the RE system, the chunks are stored on the persistent
storage. For every chunk the representing hash value is stored
in memory. Let us assume that all chunks are very small, e.g.,
L = 8B. A hash value of sizeN = 4B would produce 4.2
billion unique entries for 8B chunks, viz. 24TB of data on
the HDD. The 4B hashes are stored in a doubly linked LRU
list, for which a 2x3B virtual memory pointers (forward and
backward connection pointers) would suffice for an 134GB
hash memory space. The chunk size, which is also stored in
memory, is 2B; the log generation output is 1B and the disk
number 1B (in case a disk array is implemented). The total
overhead per chunk is therefore 14B.

D. Transmission Overhead

The transmission overhead is the amount of bytes that
will be sent instead of the actual data. It is expressed in
terms of percentages of the actual data. For example, if each
60B chunk/object is encoded with a unique 6B hash, the
transmission overhead is10% (or N/L). Therefore, we define:

• Savingsas the amount of bytes the provider would not
transmit due to the implementation of a redundancy
elimination technique.

• Redundancy is the amount of bytes that a technology
would determine as redundant.

Note that the difference between savings and redundancy is
the transmission overhead.

For the proxy cache, once an object is found in the cache
and is fresh, it does not have be downloaded from the server.
As described above, the implemented partial downloading
policy does not add any extra overhead.

In the RE module, there are several cases in which the
redundancy spans over more than one chunks. In our imple-
mentation, the encoding cache sends the location of the chunk
in memory (4B are enough to map a memory of 4TB) and
also 2B that indicate the maximum matching region. Thus, the
transmission overhead has a lower bound of 6B per chunk.

III. I MPLEMENTATION AND DATA SET

To understand the tradeoffs of each type of cache (stan-
dalone web cache, standalone chunk based cache, hybrid
cache) we have developed an emulator for each one. The
emulators read packet-level traces using theLibpcap library
[13] and perform TCP reassembly using theLibnids library
[14], which emulates a Linux Kernel 2.0.x IP stack. Object
reconstruction and each of the caching techniques are devel-
oped as separate libraries in C.

We captured two wireless packet traces in an aggregation
router of an educational institution, one in a low bandwidth
link (Trace A) and one in a high bandwidth link (Trace B).
The details of the traces are shown in Table II. We did not



4

Trace A Trace B
Length 11am-2pm (3h) 7am-2pm (7h)
Dates 11 Jan 2011 10 April 2011

Size (GB) 19GB 64GB
Packets (Mil) 36 104
Unique IPs 651 1103

TABLE II
TRACE FILE DETAILS

TCP UDP IPSEC ESP GRE
0

20

40

60

80

100

Pr
oto

co
l D

ist
rib

uti
on

 (%
)

HTTP HTTPS DNS Netbios IPP Other
0

20

40

60

80

100

Ap
pli

ca
tio

n D
ist

rib
uti

on
 (%

)

Fig. 2. Protocol and application distribution of bytes in the traces

process the TCP connections, if only one half-stream appears
in the traces. This is important because one stream may contain
the HTTP request and the other the HTTP response. In Fig.
2, we showcase the protocol and application distribution in
the captured traces. We may observe that the majority of
the generated traffic is TCP and a smaller portion of UDP
traffic. From the application analysis, we may see that HTTP
is the dominant application, with a small portion of HTTPS,
and 15% of other types of traffic. As we will show in the
following section byte caching other types of traffic may
provide additional savings.

IV. RESULTS

A. Optimal Parameter Selection

The three main parameters of the RE module are the
fingerprint sizeβ, the average chunk size (which is a derivative
of the modulo parameterγ) and the minimum chunk sizeδ. We
have performed multiple runs of the emulator to determine the
optimal combination of those parameters. We used the biggest
trace (Trace B), and modified the scheduler to send all data
to the RE module (contrary to the default configuration of
sending only the uncacheable content), such that the highest
possible amount of data flow through the RE module.

We estimated the savings and memory overhead using a
Response Surface Methodology (RSM) [15]. We varied the
three parameters from8− 64B with increments in powers of
2. f1(β, γ, δ) represents the 3-dimensional response for the
savings andf2(β, γ, δ) the corresponding one for the memory
overhead. Their responses are shown on Fig. 3. Note that in the
graphs, the red values (higher) are better for the savings and
the blue values (lower) are better for the memory overhead. We
can observe that the vector{β, γ, δ} = {8, 32, 32} provides
the best savings, and the smallest memory overhead. Aγ =
32B would produce chunk size of average length around 64B.
For the rest of the results we are going to use these values.
The best savings for web data using an RE module is21%

20

40

60

10

20
30

40
50

60

10

20

30

40

50

60

 

β

 Quadratic Response Surface Model

γ
 

δ

15

16

17

18

19

20

21

22
Savings

10
20

30
40

50
60

10

20
30

40

50
60

10

20

30

40

50

60

 

β

 Quadratic Response Surface Model

γ
 

δ

10

20

30

40

50

60

70Memory Overhead

Fig. 3. Savings and memory overhead as a function of the inputparameters.

and this is attained with a memory overhead of22%. In other
words, for every 1TB of data in the disk, 220MB needs to be
stored in memory.

The parameters of the statistical regression are shown below
and have been estimated with a squared coefficient of multiple
correlationsR2

1
= 0.83 andR2

2
= 0.92.

f1 = 12.7 − .01β + .217γ + .273δ − .001γδ − .002γ
2
− .003δ

2

f2 = 103− 0.03β − 2.04γ − 2.05δ + .016γδ + 0.01γ
2
+ 0.01δ

2

For presentation purposes, we have omitted the combina-
tions that had minimal contribution (second most significant
digit). The parameters of the polynomials provide an indication
of the effects of each of the system parameters to the savings
and the memory overhead. Indicatively, the fingerprint sizeβ
has a smaller contribution compared to the other parameters,
and the minimum chunk sizeδ has the highest contribution.

B. The Hybrid Approach

In this subsection the scheduler forwards the non-cacheable
content to the RE module and the cacheable to the proxy
caching module. This was derived from the observation that
this non-cacheable content can be more than35% of the web
content. For example, we found that the non-cacheable content
is 49% for trace A and37% for trace B.

In Fig. 4, we showcase the performance of a proxy stan-
dalone system, an RE standalone system and the hybrid system
that we propose. Obviously the savings from an RE standalone
system would be higher than a proxy cache system. In our
traces we find that the RE provides 33% higher savings
compared to a proxy cache. However, the most interesting
result is that a hybrid system provides higher savings than
a standalone RE. Given that the RE has higher redundancy
compared to the hybrid system in all traces (figure 5), we
may conclude that the higher savings for the hybrid system is
an artifact of the lower transmission overhead to encode and
send the chunks to the decoding side.

An additional advantage of the hybrid system is shown in
the memory overhead graph of figure 6. We can see that the
memory overhead for the RE system ranges from15− 22%.
The hybrid system though requires half or one third of the
memory compared to a standalone RE implementation.

The final micro-benchmark that we performed is based on
the bandwidth that the system can support, or else the amount



5

Proxy RE Hybrid
0

5

10

15

20

25
Sa

vin
gs

 (%
)

 

 

Trace A
Trace B

Fig. 4. Savings for proxy cache standalone, RE standalone and hybrid system.

Proxy RE Hybrid
0

5

10

15

20

25

30

Re
du

nd
an

cy
 (%

)

 

 

Trace A
Trace B

Fig. 5. Redundancy for proxy cache standalone, RE standalone and hybrid
system.

of time that the RE module requires to process the web data.
We used a 16-core Intel Xeon X5560 with CPU 2.8GHz and
16GB of RAM on a 64bit Linux OS. By using the GNU
profiler gprof [16], we isolated the cumulative time per trace
to perform the chunk based RE functions. These functions are
related to hash generation and fingerprinting. We observed that
these functions consume almost95% of the CPU time, and
the majority of the time was spent for generating the Rabin
fingerprints (∼2.31 msec/call).

By dividing the bytes that would flow from each module
with the cumulative time spend to process the data, we could
derive the bandwidth of the system. Figure 7 indicates that
hybrid approach can support up to 1.5 Gbps, viz. a 3x speedup
compared to an RE only module. This speedup comes from
the fact that the RE module in the hybrid case needs to process
much less traffic (only the non-cacheable portion), whereasthe
RE standalone cache needs to process all web data. Since a
hybrid cache can have higher or close to the RE standalone
savings such a speedup is highly beneficial. Note that the hash
computation for the proxy cache is minimal, thus it is not
shown on Fig. 7.

Finally, we need to point that this speedup does not include
the disk I/O operations. Since newer disks can support close
to Gbps of throughput, an RE only system would potentially
create a CPU bottleneck, which the hybrid cache resolves.

C. Finite Sized Cache System

In this subsection we used our biggest trace (Trace B). We
performed two emulations of the hybrid system, one with a

Proxy RE Hybrid
0

5

10

15

20

25

M
em

or
y 

O
ve

rh
ea

d 
(%

)

 

 

Trace A
Trace B

Fig. 6. Memory requirement to represent data for proxy cachestandalone,
RE standalone and hybrid system.

RE Hybrid
0

0.5

1

1.5

CP
U 

Th
ro

ug
hp

ut
 (G

bp
s)

 

 

Trace A
Trace B

Fig. 7. CPU throughput for an RE standalone and the hybrid system.

disk capacity of 1GB and another one with 10GB. The two
emulations are plotted in Fig. 8a and 8b. Note that the x-axis
represents the amount of bytes allocated to each module, in
the format{RE module size - Proxy module size}. Those two
figures depict two things: (A) They showcase the percentage
of disk space allocation for each functionality in order to get
the optimal savings. This is important as the memory and disk
space are shared entities. (B) They present the difference in
the savings between a proxy cache standalone system and a
hybrid system (red and blue line). This is because the savings
of the proxy cache module do not change when implemented
as part of the hybrid system.

Therefore, from Fig. 8a, we may observe that the maximum
attainable savings, for the 1GB hybrid system, are19%.
Whereas for the 10GB hybrid system the maximum attainable
savings are22%. Since an infinite sized cache2 provides
savings close to22%, we may conclude the total storage space
of a hybrid system needs to be 10GB. Fig. 8a and 8b present
similar savings for the RE module. This indicates that the
RE module has diminishing returns only after 400MB have
been used. Given that the non-cacheable content in the traceis
much bigger, we may conclude that a 400MB allocated to the
RE module would be enough to provide the optimal savings.
Apparently the decrease in the savings for the hybrid system
with size 1GB, compared to the one with 10GB space, is an
artifact of the proxy cache. Hence the proxy cache module

2Infinite size cache is a cache whose storage space is higher than the size
of the trace, therefore no content replacing is taking place.



6

1−0 0.8−0.2 0.6−0.4 0.4−0.6 0.2−0.8 0−1
0

10

20

30
S

a
v
in

g
s
(%

)

Percentagewise allocation (GB)
a

 

 

10−0 8−2 4−6 6−4 2−8 0−10
0

10

20

30

S
a

v
in

g
s
(%

)

Percentagewise allocation (GB)
b

 

 

RE module
Proxy Module
Total System Savings

RE module
Proxy Module
Total System Savings

Fig. 8. Disk Capacity Allocation for each module for an 1GB (a) and 10GB
(b) hybrid system (RE module size - Proxy module size)

needs to be at least 10GB to get the maximum savings. This
shows that the RE module requires only4% of additional
storage space to provide an increase of28% in the savings.

We also modified the scheduler to send all web data to
the RE module (emulating again an RE standalone system).
We observed a difference of3% between a 1GB and 10GB
disk storage. This indicates that the reason that only 400MB
of RE module are required in the hybrid system is because
the non-cacheable content is not as repetitive as the cacheable
content. Non-cacheable content tends to include user specific
information, which may not be the same across different users.

D. Addition Savings and Future Work

In Section II-B2 we proposed an RE module with a sin-
gle circular application level buffer. Nonetheless, we have
observed that16% − 20% of the traffic is UDP. Therefore,
we implemented an additional static buffering approach with
a capacity equal to the maximum MTU (at least 9KB to
fit Jumbo frames). The scheduler was modified to forward
UDP traffic to this static sized buffer, such that the RE
operations can be performed on a per packet basis in this
buffer. Effectively, the modified system is able to perform the
RE module functionalities on a per TCP connection basis and
on a per packet basis. Our results indicate that a dual-buffered
system will add2% in savings for trace A and2.6% in trace
B. The difference in the savings between the hybrid cache and
the proxy cache would now increase to10%.

Finally, we need to note that such an additional application
buffering may potentially create other issues, which require
further investigation, e.g. processing encrypted/SSL traffic. We
plan to extend our emulator to a prototype and identify further
challenges.

V. CONCLUSION

In this work we proposed and emulated a redundancy
elimination system that uses both object and chunk based
deduplication techniques. Each of those techniques, if run
independently, have significant drawbacks. For example, a
proxy cache does not process uncacheable content and de-
termines redundancy at the object level; therefore it offers
limited savings. The RE cache determines redundancy at a
smaller granularity, but has resource limitations such as storage
overhead and CPU processing.

The proposedhybrid system incorporates both those tech-
niques into an in-the-box solution with a static scheduler.The
scheduler forwards uncacheable content to the RE module,
which performs chunk based caching on a per object basis.
The proxy cache module is able to handle partial content
and optimized video service delivery related to smartphone
devices. We showcase that the system provides two times more
savings than a standalone proxy cache, and better savings than
a standalone RE system. It requires three times less memory
storage, and provides a speedup equal to 3 compared to an RE
only approach.

REFERENCES

[1] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in Web
client access patterns: Characteristics and caching implications,” World
Wide Web, vol. 2, no. 1, pp. 15–28, 1999.

[2] “RFC 2616 hypertext transfer protocol – HTTP/1.1,”
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[3] N. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” inSIGCOMM. ACM, 2000.

[4] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redun-
dancy in network traffic: Findings and implications,” inACM SIGMET-
RICS/IFIP PERFORMANCE. ACM, 2009.

[5] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An end-
system redundancy elimination service for enterprises,” in Proceedings
of the 7th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2010.

[6] S. Ihm, K. Park, and V. Pai, “Wide-area network acceleration for the
developing world,” inProceedings of the USENIX Annual Technical
Conference (ATC). USENIX Association, Jun. 2010.

[7] M. Rabin,Fingerprinting by Random Polynomials. Center for Research
in Computing Tech., Aiken Computation Laboratory, HarvardUniv.,
1981.

[8] M. Martynov, “Experimental study of protocol-independent redundancy
elimination algorithms,” inProceedings of the first joint WOSP/SIPEW
international conference on Performance engineering. ACM, 2010.

[9] The Squid Project, “Web proxy caching,” www.squid-cache.org.
[10] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. Rao,“Youtube

everywhere: Impact of device and infrastructure synergieson user
experience,”Purdue Research Report, 2011.

[11] “Video cache squid plugin,” cachevideos.com/.
[12] A. Badam, K. Park, V. Pai, and L. Peterson, “Hashcache: Cache storage

for the next billion,” in6th Network Systems Design and Implementation
(NSDI). USENIX Association, 2009, pp. 123–136.

[13] “Libpcap, packet capture library,” www.tcpdump.org.
[14] “Libnids: E-component of network intrusion detectionsystem,” lib-

nids.sourceforge.net.
[15] G. Box and N. Draper,Response surfaces, mixtures, and ridge analyses.

Wiley-Interscience, 2007, vol. 527.
[16] J. Fenlason and R. Stallman, “The GNU profiler.” [Online]. Available:

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html


