
An apparatus for P2P classification in Netflow
traces

Andrew M Gossett, Ioannis Papapanagiotou and Michael Devetsikiotis
Electrical and Computer Engineering, North Carolina State University, Raleigh, USA

Emails: amgosset@ncsu.edu, ipapapa@ncsu.edu and mdevets@ncsu.edu

Abstract—Application classification from Netflow traces is a
challenging process due to the lack of payload information.
It is even becoming more challenging when the applications
running in the network tend to hide under well known ports,
encrypt packets and are distributed. In this paper, we propose
an in-the-box apparatus for Netflow classification of Bit Torrent
applications. The apparatus includes several device optimizations
and requires low processing power. It was developed by reverse
engineering the Bit Torrent protocol and by identifying connec-
tion patterns. The accuracy of the algorithm reaches high values
specifically for Bit Torrent peers that use the DHT protocol.

I. INTRODUCTION

In order to provide Quality of Service (QoS), to over-
provision lines and to plan resources optimally, it is of vital
importance to know the application that the end user is running
[1]. However, several applications tend to hide under ports that
IANA [2] has allocated for other purposes. Moreover, pattern
recognition and behavior profiling has become a necessity
in the discovery of malicious traffic, and Denial of Service
attacks. Therefore the Internet Service Providers (ISPs) have
incorporated out of the box processor draining devices such as
Deep Packet Inspection (DPI) or Intrusion Detection Systems
(IDS) [3].

Most researchers have paid attention to application profiling
through content identification and behavior pattern matching.
The accuracy of classification is most of the times very high
[4]. However, packet identification faces limitations due to
storage and processing overhead. In addition, payload clas-
sification may fail for encrypted payload. New applications
signature patterns will need to have vigorous string and regular
expression search and optimization.

On the other hand, flow based techniques use only header
information. Therefore, flow classification accuracy is always
worse than packet based classification. Yet, one of the main
advantages of storing Netflow traces is that information are
saved per flow and not per packet, decreasing significantly
the storage and processing overhead, as well as the cost
of implementation. Due to these advantages, Netflows are
the most widely collected traces. In order to identify the
application from Netflow traces several approaches have been
proposed. Port based flow classification has been regarded as
not very efficient way for classification [5]. Other techniques
use advanced machine learning algorithms to compute patterns
from a training dataset [6]. However, such approaches require
the existence of a “good” training dataset and require a lot of

resources to run, limiting the application to be out of the box
(require a separate device for analyzing the traces).

In this work we mainly focus on investigating a simple, ef-
fective and modular P2P classification algorithm. The P2P file
sharing filter algorithm is designed based on the principles of
DHT (Distributed Hash Table) for the Bit Torrent protocol [7].
We dealt with challenges, such as hiding under known ports
and encryption, by reverse engineering the protocol and by
proposing an effective way to identify communication patterns.
Since one of the major challenges of network operators is
the limited resources on the network devices, we incorporated
several optimizations into configurable arguments.

The paper is structured as follows. In the next section
a general overview of the developed algorithm is given. In
Section III, a detailed explanation along with the config-
urable arguments is provided. In Section IV, the algorithm
is evaluated for several torrent clients and configurations.
Finally, conclusions are drawn based on the performance of
the algorithm.

II. ALGORITHM OVERVIEW

In the Bit Torrent protocol a client will obtain a .torrent file.
This file contains the required pieces of the file(s) to be down-
loaded along with information on the tracker(s). A tracker is
a web-server that acts as a centralized communication point
between clients transferring torrents. The tracker maintains a
list of the current peers that can be contacted; it does not store
the data being transferred by the Bit Torrent protocol. Once
the client receives a list of potential peers and their open ports
from the tracker, it can open up TCP sessions and negotiate
the transfers.

DHT is a mechanism to perform decentralized file transfers.
This eliminates the need of a central tracker that maintains
the full list of current peers. Each node will dynamically join
the DHT and build routing tables based on special hashes to
locate peers who have the desired torrents. This routing table
requires constant control methods. Additionally, when a node
is searching for peers it will send a burst of queries to several
neighbors at the same time. Once the node has found a peer
to download the torrent from, it will open up a TCP session.
It has been observed that the control packets are sent via UDP
and the TCP sessions created are generally opened on the UDP
control port of either the requestor, seeder, or both.

The criteria for classifying a particular IP address and port
number as BitTorrent traffic is based on the following steps.



1) If a certain number of flows with the same source IP
and source port number are created in a specific interval,
then this source IP and source port is a BitTorrent file
sharing participant. The value of this interval is based
on the Bit Torrent protocol and will be analyzed in the
next section.

2) There are non-peer-to-peer applications that accept sev-
eral connections on the same port (such as a web server).
Therefore, we need to include the limitation that a valid
BitTorrent port number must be above the well-known
IANA range [3] of TCP/UDP port numbers. Note that
users can set their BitTorrent control port to any number,
but by default these are usually in the Dynamic or
Private Port ranges.

3) Finally, if a source or destination port is on the com-
monly used BitTorrent ports 6881 through 6889 [1], then
we can classify the particular IP address and port number
as a BitTorrent participant.

Analyzing the packet pattern of the UDP control packets, we
can identify a particular IP address and port number that is
participating in a BitTorrent file transfer. Since one of the
IPs involved in the TCP session will keep the port number
used by the UDP control mechanism, we can also identify
the negotiated TCP session as a BitTorrent file transfer. To do
this, we need to track all flows created for each IP address
and port number combination. If we have identified a source
IP and source port as a BitTorrent file transfer participant, we
can identify related TCP sessions as BitTorrent file transfers
even if the port numbers have changed. As long as the IP
addresses in the flow and at least one of the port numbers
matches the identified BitTorrent file transfer participant and
one of its flows, then we can conclude that the TCP session is
a result of the UDP control message and therefore must be a
BitTorrent file transfer. Therefore, we can introduce the forth
heuristics as follows:

• If a flow’s source IP and source port match an identified
BitTorrent file sharing participant, then the flow can be
classified as BitTorrent file sharing

• If the source IP matches a BitTorrent file sharing partici-
pant and the destination IP and destination port match
a flow previously seen by the BitTorrent file sharing
participant, then the flow can be classified as BitTorrent
file sharing.

• If a flow’s destination IP and destination port match an
identified BitTorrent file sharing participant, then the flow
can be classified as BitTorrent file sharing.

• If the destination IP matches a BitTorrent file sharing
participant and the source IP and source port match a flow
previously seen by the BitTorrent file sharing participant,
then the flow can be classified as BitTorrent file sharing.

Not all BitTorrent clients use the DHT. Instead, they rely
completely on the tracker for peer information. For these
clients, no UDP control traffic will be present. However, the
client will still attempt to open several TCP connections to
peers on a particular source port number in a small interval

of time. For this reason, both TCP and UDP flows can be
compared to the proposed heuristics to determine if an IP
address and port number combination is a BitTorrent file
transfer participant. The algorithm is based on the BitTorrent
protocol and DHT implementation. However, many point-
to-point file sharing protocols have similar characteristics
as describe by the proposed heuristics. For this reason, we
will label classified IP address and TCP/UDP port number
combinations as point-to-point file sharing participants instead
of BitTorrent file sharing.

III. IMPLEMENTATION

The algorithm classifies applications based on Netflow data.
The algorithm maintains the state of all identified point-to-
point file sharing participants (P2P participant), while process-
ing each of the trace files. Therefore, the time interval in which
a particular IP address and port combination remain classified
as a P2P participant is dependent on the number of trace files
and the time interval.

For a flow to be analyzed, four important tables are main-
tained:

• The Point to Point Profiler table (P2PP),
• The Pending Further Investigation table (PFIT),
• The classified table, and
• The classified lookup table.
The P2PP is a hash table of P2PP entries whose key is a

flow’s source IP address and source port number. The entry
maintains a list of all flows that contain this source IP and
source port. Each entry also maintains a hash table for fast
lookups of flows in its flow list. The P2PP entry’s flow lookup
table is important for three reasons.

The first is to prevent redundant flows from being checked
against the heuristics. For our implementation, a flow is
defined by nine parameters, protocol number, source and desti-
nation IP, source and destination port, start timestamp, packets,
bytes, duration of flow. However, according to Cisco Netflow
Format [8], flows can contain additional information such as
TCP flags, input and output interface indexes, etc. Therefore,
there can be ”redundant” flows that must not be used in the
classification. For example, in a TCP connection there will
be a different flow for each of the steps within the three-
way handshake (SYN, SYN+ACK, and ACK). The heuristic
looks for multiple connections to different user, therefore the
different flows between the same two hosts should not be used.
Note that the “redundant” flows are still added to the P2PP
entry’s flow list to account for packet, byte, and flow statistics.

Second, the lookup table provides a quick reference when
examining the PFIT (explained later in this section). Finally,
it allows for the flow list to be empty while still maintaining
the state of each flow within the P2PP entry. This conserves
memory when processing a large number of related flows. A
P2PP entry is identified as a P2P participant as shown in Fig.
1.

The PFIT is a hash table of flows. Each flow whose
corresponding P2PP entry is not yet identified as a P2P
participant is placed in the PFIT. When classifying only clients



Fig. 1. P2PP flow chart for determining if entry is a P2P participant

that use the DHT, all TCP flows are originally placed in the
PFIT and then later cross referenced with the classified table.
Additionally, all flows that are returned from the P2PP are also
placed in the PFIT table (as shown in Fig. 1).

The classified table is a hash table that contains a list of
P2PP entries that have been identified as P2P participants.
Each P2PP entry in the list shares the same source IP address
but will have different source ports. The classified lookup table
is a hash table of all P2PP entries currently in the classified
table. It is used to quickly determine if a newly identified P2PP
entry should be added to the classified table without searching
each list in the classified table.

Several configurable attributes are defined within the al-
gorithm implementation. Table 1 lists and describes each
constant.

A P2P file sharing application should use port numbers
above the well-known IANA range 0-1023, therefore the
default minimum port was chosen to be 1023. The minimum
flows and minimum interval are values that require the most
analysis. The DHT protocol routing algorithm [7] defines
’buckets’ of nodes in which queries may be sent to. The
maximum size of these buckets is eight. By observation, we
found that queries sent to neighboring nodes were in burst of
five to seven. For this reason, we choose the default minimum
flows to be five. The minimum interval was chosen based on
empirical data presented in the next section.

The “max flows per run” was incorporated as an optimiza-
tion. When processing large trace files, the P2PP and PFIT
tables would grow too large, leading to saturation of memory
resources. The default of 750,000 flows was set as a perfor-
mance limitation of the testing environment. Faster machines
can likely handle greater than 1,000,000 flows without much
of a performance impact.

An overview for the interactions between the P2PP, PFIT,
classified, and classified lookup tables is shown in Fig. 2. The

Fig. 2. Overview of the interactions between the P2PP, PFIT, classified, and
classified lookup tables.

Fig. 3. Complete alogirthm overview for Flow based classification of network
traffic.

complete steps for classifying network traffic based on Netflow
data are shown in Fig. 3.

Note in Fig. 3 the following processes in function for-
mat: P2P.rebuildP2PP(), P2P.add(flow f), P2P.cleanP2PP(), and
P2P.crossTableEntry(flow f).

A. P2PP Rebuild process

The algorithm maintains the state of all identified P2P
participant while processing each of the trace files. However,
after each trace file is processed or the maximum allowed
flows per run is exceeded, the PFIT and P2PP tables are
cleared. Therefore, to maintain the state of all identified P2P
participants, the P2PP is re-populated at the beginning of each
run with classified P2PP entries in the classified table. An
important thing to note is that all P2PP entries in the classified
table have no flows in their flow list. They only have the



TABLE I
CONFIGURABLE ATTRIBUTES

Constant Default Value Description
min port 1023 Minimum port value for a flow to be considered in profile to be a P2P participant.

min flows 5 flows Minimum number of flows that must be seen within min interval for a P2PP entry to be considered a P2PP
participant. Once a P2PP entry is identified as a P2PP participant, all associated flows will be classified as P2P file

sharing flows for the duration of the algorithm
min interval 200 msecs Small interval of time in which the min flows must be seen

to classify a P2PP entry as a P2PP participant.
enable TCP in P2PP true Flag to indicate if TCP flows can be used to create new P2PP entries.

When disabled, no P2P file sharing applications will be identified for clients that do not use the DHT.
max flows per run 750,000 Maximum number of flows processed before the PFIT and P2PP are cleaned. Higher numbers will have

potentially higher number of flows identified as p2p file sharing applications. However, higher numbers also degrade
performance as more memory and collisions occur when accessing the PFIT and P2PP hash tables.
Note for small CSV files (less flows than max flows per run) this variable will not come into play.

appropriate keys for each flow within their flow lookup table.
This conserves space as the flows (potentially 100,000’s) can
take up a lot of memory. After classifying the flow, there is
no reason to store the flow data. We only need to know that
the flow existed. The flow lookup table will contain the flow
key to indicate this.

B. Add Flow process

The algorithm attempts to add a flow to a particular P2PP
entry and/or PFIT table. However, to be classified as P2P file
sharing flow, the flow must be UDP or TCP and both the
source and destination port number must be above the well
known IANA range of 1024. The flow is first checked against
this criterion to determine if it is within profile. If so, then the
following occurs:

If the flow is UDP it will be added to the P2PP. If the flow
is TCP and TCP flows are not allowed in the P2PP, then the
flow is added to the PFIT. Otherwise, the TCP flow will also
be added to the P2PP. When a flow is placed in the P2PP,
the P2PP table will be checked for an entry with the flows
source IP and source port. If none exists, a new entry will
be created. Finally, the flow will be added to the P2PP entry
via P2PP−entry.checkF low(flowf) as shown in Fig. 1. If
the corresponding P2PP entry is not identified as a P2P file
sharing participant, then the flow will also be added to the
PFIT.

C. Clean P2PP process

After all flows within a trace file have been examined, or the
maximum number of flows per run has been exceeded, then
the P2PP will be cleaned. Each entry within the table will be
checked, and if it has be identified as a P2P participant, than
all flows within its flow list will be removed from the PFIT
and the returned flows will be classified as P2P file sharing
flows. The P2PP entry will be added to the classified table for
future reference if more flows need to be examined. The final
P2PP table will be empty.

D. Cross Table Entry process

The final step of the algorithm is to cross reference all flows
still remaining within the PFIT after the P2PP has been cleaned
with the classified table.

• Search the classified table for a list of p2pp entries with
source IP equal to this flow’s source IP.

– if the P2PP entries source port equals this flow’s
source port, then the flow is a P2P file sharing flow

– if any of the flows within the P2PP entry’s flow
lookup table have a destination IP equal to this flow’s
destination IP and the destination port is equal to
this flow’s destination port, then the flow is P2P file
sharing flow

• Search the classified table for a list of p2pp entries with
source IP equal to this flow’s destination IP.

– if the P2PP entries source port equals this flow’s
destination port, then the flow is a P2P file sharing
flow

– if any of the flows within the P2PP entry’s flow
lookup table have a destination IP equal to this flow’s
source IP and the destination port is equal to this
flow’s source port, then the flow is P2P file sharing
flow

• The flow is not a P2P file sharing flow.
The source code is available at

IV. VALIDATION

We tested the algorithm on an isolated lab with several
users. A Linux server was setup with three different BitTorrent
clients installed:

1) Transmission 1.34 [5]
2) Vuze 4.3.1.4 [6]
3) uTorrent 2.0.1 [7]

Note that Transmission 1.34 is not DHT aware and therefore
will not send any UDP control packets during the BitTorrent
file transfer. Vuze and uTorrent clients are DHT aware.

Two additional programs were installed to export and collect
Netflow statistics: Flow-tools [8] and Softflowd [9]. Softflowd
can be used to monitor the Network Interface Card (NIC) on
the server and create flows. These flows were then exported to
the server’s loopback address and stored in standard Netflow
Flow-tools format. Later, the Netflow flows were exported to
plain text CSV (Comma separated value) files and processed.

Two tests were performed for each client. In the first test,
the server sent and received only BitTorrent traffic. In the



0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

min interval (ms)

A
cc

ur
ac

y 
(%

)

 

 

Transmission Single User
Transmission Multiple Users
uTorrent Single User
uTorrent Multiple Users
Vuze Single User
Vuze Multiple Users

Fig. 4. Accuracy of each BitTorrent client (DHT and non-DHT) for both
tests with varying the ”minimum interval”.

second test, the server was connected to a hub so additional
network traffic would be present in the Netflow data. This
included streaming music over HTTP traffic, FTP downloading
sessions, and Play Station online gaming (a form of P2P traffic
using fixed port numbers: TCP 80, 443, 5223 and UDP 3478,
3479, 3658).

When calculating the algorithm’s accuracy, we defined
all traffic destined to or from the server’s IP address with
TCP/UDP port number greater than the IANA well-known
range as P2P file sharing traffic. Additionally, we included
HTTP traffic on TCP/UDP port 80 as contact to the tracker
will be HTTP data.

We analyzed the Netflow data for test 1 and test 2 varying
several parameters. We first varied the minimum interval
defined in heuristic 1. We found that accuracy quickly levels
off after 200 milliseconds for all tested clients and for running
time equal to 1h, as shown in Fig. 4. We chose to plot
Transmission as an example of a non-DHT client, and Vuze
and uTorrent as examples of DHT clients. Our algorithm was
performing with great accuracy for both tests for the DHT
aware clients. While the accuracy of the non-DHT torrent
client was low, this was observed to be affected by the
”learning” time, as shown in Fig. 5.

More specifically the classification of a particular flow is
also dependent on the amount of past data present. This is
directly proportional to the number of flows that previously
existed. As shown in Fig. 3, the classified table and P2PP
are maintained between each run. If a large number of files
representing a long interval of time are processed together,
the probability of identifying a P2P file sharing application
is increased and therefore increases the accuracy of later
dependent flows. In our test, a new Netflow file was created
for every 5 minutes of data. In Fig. 5, the flow accuracy with
TCP enabled in the P2PP is presented as a function of flow

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Hours (h)

A
cc

ur
ac

y 
(%

)

 

 

Transmission
uTorrent
Vuze

Fig. 5. Flow Accuracy with TCP enabled in the P2PP as a function of flow
correlation time.

correlation time (Time difference between the first and last
flow processed.).

Notice from Fig. 5 that the non-DHT aware Transmission
client accuracy continues to increase as the correlation interval
increases whereas the DHT aware clients quickly level off at
a much smaller interval. This seems reasonable as the DHT
aware clients have a dynamic routing table and are more
likely to create new connections not previously seen by the
algorithm. However, the non-DHT aware client is limited to
the list of clients maintained by the tracker and is therefore
more likely to have several flows to the same destination. As
the history of identified IP address and port number pairs
increases with correlation time, we see the accuracy of the
algorithm increasing. Note that the DHT capable clients had
an accuracy exceeding > 90%.

In Fig. 6, the ROC curve is presented comparing the
sensitivity, or True Positive Rate (TPR), vs. (1 - specificity),
or False Positive Rate (FPR), through methodically varying
each combination of the ”min interval” and the ”min flows”.
The diagonal divides the ROC space. Points above the diagonal
represent good classification results, points below the line poor
results. The Transmission single user, for some configuration,
has high FPR. On the other hand, as more flows are added,
the classifier looks to have a more randomized behavior
(closer to the red line), therefore a conclusion cannot be made
from the accuracy graph (Transmission Multiple Users in Fig.
4). However, such a behavior is normal since Transmission
Multiple Users had low accuracy values. On the other hand,
the DHT clients had high values of TPR, which shows that the
accuracy graph for those BitTorrent graph is accurate. Similar
behavior was observed when the TCP argument of the P2PP
was disabled.

The accuracy of the algorithm was also compared against
the standard port-based analysis (Std.1 and Std.2 in Fig.7).



Fig. 6. ROC curve with TCP enabled

Fig. 7. Comparison of standard port-based classification and proposed
heuristic with TCP enabled and TCP disabled in P2PP.

This was done for both tests with TCP enabled and disabled
in the P2PP. The Transmission accuracy is identical to the
standard port-based analysis, when TCP is disabled in the
P2PP. This is because the non-DHT Transmission client does
not send any UDP frames and therefore no IP addresses will
be identified as a point-to-point participant. However, when
TCP flows are allowed in the P2PP table it is observed that
the accuracy of the non-DHT Transmission client increases
significantly. Moreover, the DHT clients have very high accu-
racy for both tests.

V. CONCLUSION

In this paper, we have presented an algorithm that identified
Bit Torrent flows based on the characteristics of the Bit Torrent
protocol as well as communication pattern matching. The
evaluation of the apparatus has shown accuracy > 95% for
the Bit Torrent clients that exchange files through DHT. The

algorithm was designed with configurable arguments such
that it fits the limited resources on a network backbone.
Finally the modular nature of the algorithm makes it easily
implemented with other flow classification techniques. Future
research includes the addition of other classification modules
for other types of applications, with optimum goal to reach
high accuracy with low processing power.

APPENDIX

Modularity: The flows in the PFIT that have not been
identified as Bit Torrent flows, can be easily added to another
filter for further processing. The filter can be implemented as
a hash table and function similar to P2PP.

The work was supported by the Institute for Next Generation
IT Systems (ITng).

REFERENCES

[1] I. Papapanagiotou, M. Devetsikiotis, ”Aggregation Design Methodologies
for Triple Play Services” IEEE CCNC 2010, pp. 1-5, 9-12 January 2010,
Las Vegas, USA.

[2] IANA, Internet Assigned Numbers Authority,
http://www.iana.org/assignments/port-numbers (accessed May 2010)

[3] V. Paxson, ”Bro: A system for detectin network intruders in real-time”,
Elsevier Computer Networks, vol.31, pp. 2435-2463, 1999

[4] A.W. Moore, K. Papagiannaki, ”Toward the accurate identification fo net-
work applications”, Springer Passive and Active Network Measurement
pp 41-54, 2005.

[5] T. Karagiannis, K. Papagiannaki, M. Faloutsos ”BLINC: multilevel traffic
classification in the dark”, pp. 229-240, vol. 35, ACM SIGCOMM
Computer Communication Review, 2005

[6] TTT. Nguyen and G. Armitage, ”A survey of techniques for internet traffic
classification using machine learning”, IEEE Communications Surveys &
Tutorials, pp. 56-76, vol.10, 2008

[7] The BitTorrent Protocol Specification. Feb 2008.
http://www.bittorrent.org, (accessed May 2010)

[8] Cisco IOS NetFlow Version 9 Flow-Record Format. White Paper, Feb
2007.

[9] Transmission, http://www.transmissionbt.com/, (accessed June 2010)
[10] Vuze, http://www.vuze.com/, (accessed June 2010)
[11] uTorrent, http://www.utorrent.com/, (accessed June 2010)
[12] Flow-tools, http://www.splintered.net/sw/flow-tools/, (accessed June

2010)
[13] Softflowd. http://www.mindrot.org/projects/softflowd/, (accessed June

2010)


