
SLA-aware Resource Scheduling for Cloud Storage
Zhihao Yao

Computer and Information Technology
Purdue University

West Lafayette, Indiana 47906
Email: yao86@purdue.edu

Ioannis Papapanagiotou
Computer and Information Technology

Purdue University
West Lafayette, Indiana 47906
Email: ipapapan@purdue.edu

Robert D. Callaway
Cloud Solutions Group

NetApp, Inc.
RTP, North Carolina 27709

Email: bob.callaway@netapp.com

Abstract—As most on-line services are now hosted on the

cloud, customers are requesting Service Level Agreements
(SLAs) in order to use cloud services with acceptable Quality of
Service. Nonetheless, the cloud is based on provisioning resources
on demand (known as cloud elasticity). Hence, it is of primary
importance to design multi-tenant cloud storage solutions that
can provide storage services with guarantees equivalent or close
to bare-metal deployments.

In this paper, we address the problem of scheduling volume
create requests to backend hosts. We design and implement SLA-
aware scheduling policies based on the distributed OpenStack
scheduling model. We compare and contrast the existing
scheduling storage policies by performing a simulation
experiment. We demonstrate that a new SLA-aware scheduling
policy that takes into account both the available capacity but also
the I/O throughput of the backend nodes is needed to offer
quality storage services. Our SLA-aware scheduling policy is able
to achieve more than 20% improvement in the rate of SLA
violations. Furthermore, it requires fewer storage nodes (hence
lower capital expenses) and can provide higher volume I/O
throughput performance compared to the default policies.

Keywords—Cloud storage; Service Level Agreement (SLA);

Resource Scheduling; Infrastructure as a Service.

I. INTRODUCTION
Cloud computing has gained significant attention in both

academia and industry. Most major IT companies are either
investing resources into the cloud computing area or buying
cloud services from major cloud service providers. Cloud
infrastructure, or Infrastructure as a Service (IaaS), challenges
the traditional methods of high performance computing and
datacenter management. It offers high flexibility, scalability
and cost-effectiveness and a growing number of customers are
moving their IT services to cloud platforms [1].

With the popularity of cloud computing, a variety of
challenges have appeared, such as performance prediction and
management [2]. More specifically, in today’s cloud storage
field, many IaaS platforms such as OpenStack [3] and
Eucalyptus [4] lack an effective performance-oriented resource
scheduling policy to control the system performance. On the
other hand, SLAs are one of the major considerations for every
buyer of cloud computing services. The question often asked is
how many nines of availability or what is the maximum delay a
given provider will guarantee. For some sensitive applications,
a minimum of three nines (99.9%) of availability is required,
whereas for others, low-latency services are more important.
The inherently dynamic nature of a cloud offering, combined
with the fact that resources change dynamically, makes it

difficult to define a meaningful SLA for various cloud
computing services. As a consequence, only a few of the cloud
storage providers are offering service SLAs on I/O throughput
performance. Amazon Elastic Block Store is the only
commercial cloud provider who provides a specific level of I/O
performance by creating a provisioned I/O per second (IOPS)
volume [5]. This service is able to deliver no less than 90% of
expected IOPS performance in 99.9% of the time. In order to
increase the market share in the highly competitive cloud
market, cloud providers must offer higher and differentiated
performance SLAs in terms of availability, capacity and I/O
throughput.

From the research perspective, only a few studies have
looked in the issue of SLA-aware virtual resource management
on the cloud [6] [7] [8], and from the perspective of allocating
VMs. Nonetheless, due to the essential difference in operation
mechanisms, these research achievements are not directly
applicable to the storage volume allocation problem. More
recently, some studies looked into an energy-aware resource
scheduling algorithm [9] [10]. In the context of SLA-based or
SLA-aware resource scheduling, Goudarzi et al. [11] presented
an SLA-based multi-dimension resource allocation algorithm
for multi-tier applications in cloud computing environments.
Wang et al. [12] proposed an automatic optimization schema
that utilizes data chunking, placement and replication to
achieve better I/O performance. However, to our knowledge,
there has not been any work that tackled the volume request
allocation problem in cloud block storage systems using more
than the available capacity as an input to the allocation
algorithm.

The problem addressed in this paper is the design of a
scheduling policy to effectively utilize storage resources and
manage the performance in a cloud infrastructure platform so
that cloud storage services can be offered with guaranteed
capacity and I/O throughput. In cloud storage, there are three
main categories on how the data can be stored: (a) ephemeral
storage: data are stored on the provisioned cloud VMs and are
lost after reboot, or the release of that VM; (b) block storage:
data is stored in the persistent storage that is attached, and it is
accessible and can be deleted from the VM; (c) object storage:
data that is accessed from a large number of clients that
demands scalable access, generally through a REST API.

In this paper, we propose an SLA-aware resource
scheduling policy for cloud block storage. The key idea is
based on the fact that I/O throughput should be taken into
account when the scheduler is making a volume request

placement decision. As the beneficiaries of such an approach,
the cloud storage providers will be able to provide higher I/O
throughput performance SLA to customers with fewer storage
nodes.

The reminder of our paper is organized as follows: In
Section II, we briefly describe the current scheduling algorithm
in the OpenStack block storage service and its corresponding
weaknesses. In Section III, we describe the proposed
scheduling algorithm design. In Section IV, we present our
experimental methodology including evaluation metric and
simulator design. Finally, in Section V we conclude our work
and present potential extensions.

II. OPENSTACK CINDER SCHEDULING
OpenStack is a global collaboration of developers and

cloud computing technologists producing a ubiquitous open
source cloud computing platform for public and private clouds.
The open source community and more than 200 companies
have joined the development of OpenStack. OpenStack
consists of multiple components focusing on different cloud
services so that user is able to customize the infrastructure
based on their individual needs. The core services in
OpenStack are identity (Keystone), compute (Nova), network
(Neutron), Glance for a repository of VM images, and storage
(Cinder for block storage, Swift for object storage).

Our work focuses on the Cinder service [13], the block
storage service of OpenStack. Cinder provides an infrastructure
for managing block storage devices (i.e. volume) and provides
end users with a self-service API to request and consume those
resources. Various storage backends can be connected to
Cinder to support storage virtualization. Cinder includes three
components: cinder-api, cinder-volume and cinder-scheduler
to enable management of volumes and snapshots. The key
component is the cinder-scheduler, which encompasses several
scheduling policies. When Cinder receives a volume request
such as create, the cinder-scheduler selects a storage node as
the best candidate to serve the request based on each node’s
status and request parameters. The workflow of the filter
scheduler is shown in Fig.1 and consists of two steps:

i. Filtering. Scheduler maintains a list of storage hosts
with metadata. During this step, some hosts which are
unable to provide enough capability to meet the need of
a volume request are filtered out from the list. For

example, if a 10GB volume is requested, then all hosts
who have less than 10GB available space will be
excluded from the candidate list.

ii. Weighting. After the filtering step, all hosts on the list
are capable to serve the request. The scheduler
calculates the cost, i.e. weight, of each host by
comparing the hosts characteristics and the request
characteristics. Then hosts on the list are sorted based on
their weight. The host which has the least weight will be
chosen as the best candidate.

Several weighting policies have been implemented for the
filter scheduler in the Havana release of OpenStack in October
2013. The default weighing policy is the available capacity
policy, in which hosts are sorted based on their available
capacity; the host with the largest available capacity will be the
chosen one to provision. Allocated space policy is an optional
policy in which hosts are selected based on the lowest allocated
space. If the total capacity of each host is the same, then the
allocated space policy will behave as the capacity policy.
Finally, the Chance policy randomly picks one host from list.

 Based on the workflow model, the performance of the
scheduler is heavily dependent upon the weighing step. After a
new volume is placed on a storage node, all operations on that
volume will affect the state of the host node and even changes
the state of whole cloud storage system. Therefore, the decision
made by the scheduler will prominently influence the
performance of the storage system. However, not many system
designers and cloud providers have realized the importance of
proper resource scheduling in cloud storage systems. Most of
them have focused on the scheduling optimization on
computing resources, such as the virtual machine placement
problem. This is also obvious in the OpenStack’s code base: 30
scheduling filtering policies have been implemented for the
Nova compute platform, but only 6 policies exist in the Cinder
block storage service. Furthermore, there are a number of
limitations on the current scheduling strategies in Cinder. The
key disadvantage is that none of the existing policies is I/O
throughput aware. In other words, the scheduler may not select
hosts that offer higher I/O throughput, even if they have the
same available capacities. This may result in poor performance
for a cloud storage service, unpredictability of the currently
allocated volumes, and the extra allocation of resources to
satisfy the end-to-end SLAs. In this paper, the I/O throughput
performance of current policies is investigated and our results
show that none of them is able to provide satisfied I/O
performance management ability.

III. SLA-AWARE SCHEDULING
The main objectives of our work are (i) to enable cloud

storage systems with I/O performance management (ii) to
minimize the I/O throughput SLA violations using effective
scheduling policies. I/O throughput SLA in cloud storage
service is defined as the I/O throughput of user’s volume is
higher or equal to a specific number of IO operations per
second (IOPS) in at least 99.9% of time. The core mechanism
of our strategies takes into account the I/O throughput property,
when the scheduler makes a new volume placement decision.

Figure 1. Workflow of Filter Scheduler

Host	 list

Host	 1
AvailSpace	 =	 500GB
Avail	 I/O	 =	 500	 IOPS

Host	 2
AvailSpace	 =	 700GB
Avail	 I/O	 =	 550	 IOPS

Host	 3
AvailSpace	 =	 900GB
Avail	 I/O	 =	 400	 IOPS

Host	 list	 after	 filtering

Host	 1
AvailSpace	 =	 500GB
Avail	 I/O	 =	 500	 IOPS

Host	 2
AvailSpace	 =	 700GB
Avail	 I/O	 =	 550	 IOPS

Host	 3
AvailSpace	 =	 900GB
Avail	 I/O	 =	 400	 IOPS

Volume	 Request
Create
200GB

SLA	 =	 450	 IOPS

Filtering

Weighting

Figure 2. I/O throughput filtering

The scheduler continuously monitors the state of all storage
hosts, including available capacity and allocated capacity.

In the OpenStack’s scheduling implementation, the
following properties are added (1) host I/O throughput, (2)
volume I/O throughput and (3) available volume I/O
throughput. Available volume I/O throughput is defined as the
I/O throughput a new volume will get after it has been created
on a specific host. By taking advantage of these properties,
volume placement decision is not just based on the storage
capacity, but also depends on the I/O throughput of the both
the volume in service and the volumes that are going to be
allocated to the backends. Hence, the scheduler gains the
ability to manage the I/O performance and the cloud provider
is able to offer an I/O throughput SLA to the customer. We
study the performance of the OpenStack Cinder filter
scheduling by allocating the I/O throughput properties at the
filtering and the weighting steps. More specifically:

• I/O throughput filtering. After filtering out hosts without
sufficient capacity to serve volume request, the
scheduler also filters out the hosts whose available
volume I/O throughput is lower than the SLA IOPS.

• I/O throughput weighing. After sorting the eligible hosts
according to their available volume I/O throughput, the
host with the highest I/O throughput will be chosen as
best candidate to place the volume request.

A. I/O throughput filtering
The purpose of taking into account the I/O throughput at

the filtering stage is to minimize the I/O SLA violations
because no matter what weighting policy will be applied on the
filtered list, the final decision is SLA guaranteed. In Fig. 2, an
example is depicted. Assuming a request to create a 200GB
volume with 450 IOPS SLA, the scheduler first checks the
available capacity of each host. The host state shows that the
available space on all hosts is large enough to serve this
request. However, host #3 has to be filtered out because it can
only provide 400 IOPS for this new volume. Host #1 and #2
pass the filtering step and ready for weighing since their
available I/O speed is higher than the SLA requirement.

If the I/O throughput filter returns an empty host list, which
means no host can serve the volume request with the SLA

Host	 list	 after	 filtering

Host	 1
AvailSpace	 =	 500GB
Avail	 I/O	 =	 500	 IOPS

Host	 2
AvailSpace	 =	 700GB
Avail	 I/O	 =	 550	 IOPS

Host	 3
AvailSpace	 =	 900GB
Avail	 I/O	 =	 400	 IOPS

Host	 list	 after	 weighing

Host	 1
AvailSpace	 =	 500GB
Avail	 I/O	 =	 500	 IOPS

Host	 2
AvailSpace	 =	 700GB
Avail	 I/O	 =	 550	 IOPS

Host	 3
AvailSpace	 =	 900GB
Avail	 I/O	 =	 400	 IOPS

WeighingFiltering

Figure 3. I/O throughput weighing

guaranteed, the scheduler will try a second filtering round
using available capacity filtering policy. If some hosts have
sufficient capacity, then the volume request will be served
according to the result of available capacity filtering algorithm.
The reason we design this way is because serving a request is
always better than rejecting it, although I/O is not fully
guaranteed. However, an SLA violation will happen as long as
I/O throughput filter return an empty list.

B. I/O throughput weighing
I/O throughput weighing policy utilizes the default

available capacity filter, but considers the I/O throughput
property at the weighing step. Fig. 3 shows the weighing
procedure. The host with the highest available volume speed
will be chosen as the best fit. Assuming the same volume
request, as in the previous example, all hosts will pass the
capacity filter because there is enough available storage space
in all nodes. Then, the I/O throughput weighing algorithm sorts
hosts in descending order by their available volume I/O
throughput. In the end, host #2 with 550 IOPS available
volume I/O throughput wins the game although it does not
have the largest available capacity. Host #3 which is a potential
SLA violation choice is sorted to the end of list. In general, the
top host is able to guarantee the I/O throughput SLA. If the
available volume I/O throughput of the top host is lower than
SLA requirement, then all active volumes are violating the I/O
throughput SLA. In this case, the cloud provider may need to
add an extra storage node since the current hardware setup is
unable to support the pre-defined SLA.

In addition to the above, we are also proposing two
modified policies based on the I/O throughput weighting
policies. Both of them are taking into account the available
capacity and I/O throughput at the weighing step. We call the
first policy ThrThenCap, which stands for I/O throughput then
capacity. The scheduler performs two weighing steps before a
decision is made. After the first I/O throughput weighing step,
several hosts on the sorted list may have the same available
volume I/O throughput. These hosts are sorted again based on
the available capacity. The winner of this method will have the
highest available volume I/O throughput as well as the largest
available capacity.

The second policy we introduce is the ThrAndCap, which
stands for I/O throughput and capacity. It is a weighted sum of

the available I/O and the available capacity of the host. The
equation of calculating the host weight (W) is as follows:

 𝑊 = !"#$%#&%' !/!
!"#$!"#$%&$'!

+ !"#$%#&%' !"#$%
!"#$!"!#$!"#"!$%&

∗ 100 (1)

The host with the highest weight will be selected to create a
new volume. Only one weighing step is performed on this
algorithm. However, this approach may not always return the
most ideal candidate when considering I/O throughput. The
reason is that when the available volume I/O throughput of all
hosts are very close, and there is a host whose available space
is significantly higher than other hosts, then this host will have
the highest weight according to equation (1). In this case, the
available capacity property is given a higher priority.

IV. PERFORMANCE EVALUATION
In this section, we present the performance results obtained

from the evaluation of OpenStack’s Cinder scheduler policies.
Due to the complexity of the cloud storage system and the fact
that it is hard to perform multiple iterations of our experiments
in our Cinder storage deployment, we chose to use a simulation
environment to achieve repeatability of our experiments. We
developed a simulator in Java based on the Cinder scheduling
model and implemented the corresponding scheduling policies.
The combination of different filtering and weighing scheduling
policies tested in this evaluation are shown in Table 1.

TABLE I. POLICY COMBINATION

Policy Number Filtering Policy Weighing Policy
1 Capacity Available Capacity
2 Capacity Chance
3 Capacity I/O throughput
4 Capacity ThrThenCap
5 Capacity ThrAndCap
6 I/O throughput + Capacity Available Capacity
7 I/O throughput + Capacity Chance
8 I/O throughput + Capacity I/O throughput
9 I/O throughput + Capacity ThrThenCap

10 I/O throughput + Capacity ThrAndCap

A. Performance Metrics
In order to compare the efficiency of different scheduling

policies and evaluate their corresponding performance, we use
two metrics. The first metric is the SLA violation percentage.
When a volume performs I/O operations and the I/O
throughput is lower than the SLA threshold, an SLA violation
occurs. The SLA violation percentage is defined as the total
number of SLA violation events relatively to the total number
of sampled simulation time. The second metric is the volume
I/O throughput. On the agreement of complying with the SLA
performance, customers always expect higher volume speed
than they will have. An intelligent scheduling algorithm should
be able to demonstrate outstanding management ability in
terms of both these metrics.

B. Experiment Design
We choose the virtual Cinder block storage deployment

proposed by Rackspace [14]. There are 8 storage nodes in the
system, each node is comprised of 1 CPU core, 8 GB memory
and 12 * 600GB 15K Serial Attached SCSI (SAS) in a
Redundant Array of Independent Disk (RAID) 1+0. A single

Figure 4. Percentage of SLA violation for different weighing policies with

available capacity filtering policy

Figure 5. Percentage of SLA violation for different weighing policies with

different I/O throughput SLA

hard disk is able to achieve 190 IOPS throughput with 8k block
size when I/O operation is 70% read and 30% write. This load
ratio is the most common ratio in cloud storage systems [15]
[16]. We use a RAID IOPS calculator [16] to compute the
maximum I/O bandwidth of a storage node to be 1948 IOPS.
The test workload consists of 5000 volume requests. Each
volume request contains parameters such as arrival time,
expiration time, volume size and I/O throughput SLA. Arrival
time and expiration time is modeled according to a Poisson
distribution with the mean value of 20 and 600 minutes,
respectively. We choose Poisson distribution for simplicity, as
other distributions do not affect the core outcome of our results.
The simulation simulates 120000 minutes operation and the
data are sampled between 1000 to 9000 minutes to achieve
steady state performance. Volume sizes are randomly selected
from 100GB, 500GB or 1TB. Each experiment has been run 10
times.

C. Simulation Results
Fig. 4 presents the number of SLA violations of the policies
#1-#5 over 10 simulation runs. For our first

Figure 6. Percentage of SLA violations for different weighing policies with

capacity and I/O throughput filtering policy

Figure 7. Percentage of SLA violations with different number of nodes

experiment, we set the I/O throughput SLA violation threshold
to 450 IOPS. Note that the first two policies are the ones
currently implemented in Cinder scheduler. Evidently the
Capacity and Chance weighting policies provide the worst
performance. The first one may result in 23% of SLA
violations, whereas the second one in 30%. On the contrary,
our I/O throughput weighting policy (#3 in Table 1) provides
only 2.01% of SLA violations. In other words, nearly 98% of
the time the volumes will receive more than 450 IOPS by the
block storage hosts. Due to the weakness we discussed in
Section III-B, available capacity plus I/O throughput strategy
still have 20.29% violation rate. The mean and the confidence
intervals of Fig.4 are also shown in Table II. However, the two
stage weighing policy has SLA violations close to the I/O
throughput policy (around 2%).

TABLE II. THE MEAN OF SLA VIOLATIONS

Policy Number Mean 95% CI
1 23.29% (22.14% 24.44%)
2 30% (29.10% 30.90%)
3 2.01% (1.33% 2.69%)
4 20.29% (19.06% 21.52%)
5 2% (0.93% 3.07%)

Figure 8. Volume speed performance of different policies

In Fig.5, we performed the same experiment with a variable
number of SLA violation threshold. The threshold is varied
from 100-550. We did not vary for higher numbers because
changes to the simulated hardware setup would have been
required to achieve predictable SLAs. One may observe that
the I/O Throughput weighting policy can provide better
performance across the whole range of the IOPS values. Hence,
we conclude that to provide the best SLA performance, I/O
throughput policy should be applied at the weighing step.

We then proceed with a different strategy. We now modify
the filtering policies. Fig.6 presents policies #6 - #10 from
Table 1. This graph reveals that such a change would not affect
the number of SLA violations, which would be constant and
around 5%. However, none of these combinations can achieve
lower SLA violations rate than policy #3 (2%). Hence, taking
into account I/O throughput at the weighting step is necessary
to improve the SLA performance instead of the I/O throughput
filtering.

We also modify the simulated hardware setup. We increase
the number of nodes, such that the load is distributed across
more storage nodes. We set again the limit for the SLA equal
to 450 IOPS, and investigate how the number of nodes affect
the SLA violations. In Fig.7, we observe that the throughput
policy that we proposed requires eight storage nodes to
decrease the SLA violation to less than 0.5%. On the other
hand, both the default scheduling policies in Cinder require
more than 20 nodes to achieve such a performance. This shows
that the proposed scheduling policy can decrease the capital
expenses for storage nodes to almost half of what it would be if
the default policies of Cinder were used.

Finally, we also look into the volume speed performance.
Fig. 8 shows a box plot of the volume speed. All policies have
the same median value. Not surprisingly, the chance weighing
policy has the largest variance because the decision is made
randomly. The distribution of the available capacity and
throughput policy is very close. Nevertheless, I/O throughput
still achieves higher minimum value and there is no outlier. We
may conclude that I/O throughput weighing policy have better
volume speed performance than the default available capacity
policy.

V. CONCLUSION
In this paper, we focused on volume request scheduling

policies that can reduce the I/O throughput SLA violations in
cloud storage systems. To achieve this goal, we proposed
multiple SLA-aware scheduling policies based on the
OpenStack Cinder scheduler model. Our simulation results
indicate that the combination of capacity filtering and I/O
throughput weighing policy reduces the I/O throughput SLA
violation rate. Furthermore, the volume speed increases and the
number of nodes to satisfy the SLA are decreased. Overall, the
proposed policies can significantly reduce the capital
expenditures for the cloud storage providers.

As a future work, we plan to contribute the cloud storage
scheduling algorithms code base to the OpenStack community.
At the same time, we are deploying our own private cloud in
order to perform experiments on bare metal servers using
Commercial Off-The-Shelf (COTS) hardware.

REFERENCES

[1] R. Ghosh, I. Papapanagiotou and K. Boloor, “A Survey on Research
Initiatives for Healthcare Clouds,”in Cloud Computing Applications
for Quality Health Care Delivery, 2014, pp. 1-18.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin and I. Stoica, “A view of
cloud computing,” Communications of the ACM, vol. 53, pp. 50-58,
2010.

[3] “Openstack,” [Online]. Available: http://www.openstack.org/.

[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff and D. Zagorodnov, “The eucalyptus open-source cloud-
computing system,” in Cluster Computing and the Grid, 2009.
CCGRID'09. 9th IEEE/ACM International Symposium on, 2009.

[5] “Amazon Elastic Block Store,” [Online]. Available:
http://aws.amazon.com/ebs/details/.

[6] A. Gupta, L. V. Kale, D. Milojicic, P. Faraboschi and S. M. Balle, “
HPC-Aware VM Placement in Infrastructure Clouds,” in Cloud
Engineering (IC2E), 2013 IEEE International Conference on, 2013.

[7] H. N. Van, F. D. Tran and J.-M. Menaud, “SLA-aware virtual
resource management for cloud infrastructures,” in Computer and
Information Technology, 2009. CIT'09. Ninth IEEE International
Conference on, 2009.

[8] L. Wu, S. K. Garg and R. Buyya, “Sla-based resource allocation for
software as a service provider (saas) in cloud computing environments,
” in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on, 2011.

[9] A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, issue 5,
pp. 755-768, 2012.

[10] C.-C. Lin, P. Liu and J.-J. Wu, “Energy-aware virtual machine
dynamic provision and scheduling for cloud computing,” in Cloud
Computing (CLOUD), 2011 IEEE International Conference on, 2011.

[11] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based resource
allocation for multi-tier cloud computing systems, ” in Cloud
Computing (CLOUD), 2011 IEEE International Conference on, 2011.

[12] J. Wang, P. Varman and C. Xie, “Avoiding performance fluctuation
in cloud storage,”in High Performance Computing (HiPC), 2010
International Conference on, 2010.

[13] “OpenStack Cinder,” [Online]. Available:
https://wiki.openstack.org/wiki/Cinder.

[14] K. Hui, “Laying Cinder Block (Volumes) In OpenStack, Part 2:
Solutions Design,” 2014. [Online]. Available:
http://www.rackspace.com/blog/laying-cinder-block-volumes-in-
openstack-part-2-solutions-design/.

[15] A. W. Leung, S. Pasupathy, G. R. Goodson and E. L. Miller, “
Measurement and Analysis of Large-Scale Network File System
Workloads.,” in USENIX Annual Technical Conference, 2008.

[16] S. Liu, X. Huang, H. Fu and G. Yang, “Understanding Data
Characteristics and Access Patterns in a Cloud Storage System,” in
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, 2013.

[17] “RAID Performance Calculator,” [Online]. Available:
http://wintelguy.com/raidperf.pl.

