
HARENS: Hardware Accelerated Redundancy
Elimination in Network Systems

Kelu Diao∗, Ioannis Papapanagiotou† and Thomas J. Hacker∗
∗ Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA

† Platform Engineering, Netflix, Los Gatos, CA 95032, USA
Emails: diaokelu@gmail.com, ipapapa@ncsu.edu, tjhacker@purdue.edu

Abstract—With the increasing growth in the amount of in-
formation stored on remote locations and cloud systems, many
service providers are seeking ways to reduce the amount of re-
dundant information. Data deduplication can reduce the network
traffic without loss of information, and consequently increase
the available network bandwidth. However, due to the heavy
computation overhead for detecting and reducing the redundant
data, deduplication itself can become a bottleneck in high
capacity links. In this paper, we propose a method named
Hardware Accelerated Redundancy Elimination in Network
Systems (HARENS). HARENS can significantly improve the
performance of redundancy elimination in a network system by
leveraging General Purpose Graphic Processing Unit (GPGPU)
optimizations, as well as other optimizations such as the use of a
hierarchical multi-threaded pipeline, Hash-Match, and memory
efficiency techniques. Our results indicate that throughput can be
increased by a factor of 14 compared to a native implementation
of a network deduplication algorithm, providing a net transmis-
sion increase of up to 10.7 Gigabits per second (Gbps).

Index Terms—Redundancy Elimination; Deduplication; GPU
acceleration.

I. INTRODUCTION

As more people engage in activities related to online
services, network performance is becoming a big concern
for service providers. Network performance is affected by
factors such as available bandwidth, the type of the network
traffic, and the distance of the data transfer. The issue is
more prevailing in remote locations where fiber optic cables
are not yet deployed. Hence, network redundancy elimination
techniques can improve the throughput of the co-located traffic
by removing duplicate chunks of data. At the same time, when
caching is applied at the higher levels of the stack, it can offer
benefits such as reducing the response time and requests to the
server farm. On the other hand, a more fine grained redundancy
elimination approach at the packet level can provide higher
network throughput.

Generally, there are two methods for reducing network data
redundancy, proxy-caches and Data Redundancy Elimination
(DRE). Proxy-cache is a system in which an Internet object is
cached in a proxy server, and a reference to the same object
would result in the data being served by the cache and not from
the server. Proxy caches are highly effective in HTTP traffic
and in cases in which the content is not dynamic [1]. Another
method, DRE, is a system comprised of two middleboxes, one
at the backend and one at the aggregation part of the network.

Both middleboxes perform the same operation based on the
direction the traffic flows. For example, if the traffic flows
from the server to the clients, then the backend middlebox
stores chunks of data, and the corresponding hashes. Duplicate
hashes are then represented with a representative pointer.
When the mixed message of data and pointers arrive at the
aggregation middleware, it performs the reconstruction of the
data. Since not all pointers can fit in the memory of system,
an LRU (or similar) replacement algorithm can potentially be
used [2].

We implemented a generic deduplication method that could
be deployed within proxy caches or DRE middleboxes. Al-
though our approach would perform better using DRE because
DRE middleboxes are more powerful and flexible than proxy
caches. The redundancy elimination procedure we deployed is
based on the following steps: 1) the data are fetched from a
network socket, 2) the data are split into equal sized chunks
(performing the proper queueing at the lower level), 3) a
unique hash is computed for each chunk, and 4) the hash is
checked against a hash table. A hit means that the data are
redundant.

In practice, we found that the data fetching step is fast
enough, with the only limitation being transferring the data
from the socket to the user space. Hence, it does not require
acceleration. There are two approaches for the object/packet
chunking step: the legacy sliding window approach, and Sam-
pleBytes, a window sampling approach proposed by Aggarwal
[3]. In the sliding window approach, a sliding window is put
at the beginning of the data stream and slid to the end of the
stream one byte a time. For each step, the sliding window
algorithm computes the Rabin hash value of the window, and
applies a certain sampling function (e.g. MODP, MAXP) on
the hash values to choose a subset of the windows. The first
bytes of the windows are denoted as the fingerprints, which
divides the objects/packets into chunks. Another approach
is SampleBytes, which picks up some sample windows and
computes their Rabin hash values, and then applies a sampling
function to choose fingerprints from the sample windows. We
use the sliding window approach in our work because the
SampleBytes approach has the potential to lose redundancy
detection opportunities. In our work, the length of the sliding
window is 32 bytes, and the sampling function we use is
MODP. For the chunk hashing step, a general redundancy
elimination algorithm computes the hash values of each chunk.9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)

For the chunk matching step, the hash values computed in
the previous step are used to detect redundant chunks, and to
replace the redundant chunks with metadata that indicates the
location of these chunks in the cache.

Most of the research in the area of DRE has leveraged Rabin
fingerprinting. Although Rabin fingerprinting can be effective
for slower legacy network connections, modern network in-
terfaces are faster than 1Gbps, hence becoming a processing
bottleneck. More specifically, through application profiling, we
identified the time required to compute the hashes and the time
spent for memory management of the algorithm is significant.
EndRE [3] uses a sampling technique to bypass this issue, i.e.
a subset of all windows are analyzed to avoid the computation
overhead to analyze all the data.

Our work is inspired by the data storage deduplication
research performed by Shredder [4]. More specifically, Shred-
der uses GPU acceleration with a multi-threaded pipeline to
improve the disk deduplication, hence saving space on the
disk and accelerating the performance of the disk interface.
Shredder has demonstrated good performance improvements
for content chunking, but is still not fast enough for Gigabit
networks. We applied acceleration techniques, including GPU
acceleration, a multi-threaded pipeline, and our Hash-Match
algorithm. We improved the algorithm throughput up to 10.7
Gbps. While we investigate network deduplication, most of
the proposed optimizations can also be used for disk-based
deduplication.

To make network traffic redundancy elimination efficient,
we divided the redundancy elimination algorithm into three
steps, overlapping the execution of each step by using a
multi-threaded pipeline technique, and applying optimization
techniques for each step. The three main challenges addressed
by our approach and our novel contributions are:

• Multi-threaded Pipeline With Async Memory Trans-
fer: When the DRE algorithm is run serially, the system
resources are stalled waiting for CPU, Memory I/O, Disk
I/O, backplane etc. In our work, we used a multi-threaded
pipeling along with asynchronized memory transfers.
Hence, data can be transferred between the host memory
and the CUDA device memory, without waiting for the
kernel execution to complete. With this optimization, we
could achieve significantly better performance.

• CUDA Acceleration & Optimization: As mentioned
above, Rabin hash is the most common technique for
object and packet chunking. It is computationally in-
tensive to perform this operation at Gbps speed. We
optimized the chunking algorithm by a factor of 14 by
leveraging internal CUDA optimizations. We achieved
that by utilizing most of the Stream Multiprocessors
(SMs) of the GPU and the availabile threads per core.
To achieve maximum efficiency, we applied the asyn-
chronized memory transfer technique and balanced the
resource allocation to obtain 93.89% actual occupancy,
and 100% theoretical occupancy of the GPU.

• Hash-Match: In DRE systems, a hash table is used to
store the hash value of each chunk. However, at high

throughput even thread-safe hash-tables can become a
bottleneck due to thread-locking. Thread-locking in hash
tables can be highly affected by the access patterns.
Hence, we developed a Hash-Match architecture for
chunk hashing and matching. Hash-Match is inspired by
Hadoop Map-Reduce. The Hashers compute a hash value
for each chunk, and shuffle it to the Matchers. Then the
Matchers match the hash values to discover redundancy
that can be exploited.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work and the limitations of these
efforts. Section III present the details of our algorithm and
optimization techniques. Our evaluation approach and experi-
mental results are covered in Section IV. We also summarized
the results and impacts of our experiments in this section. In
Section V, we conclude and discuss our future work.

II. RELATED WORK

A. Content-Based Data DeDuplication

Fingerprinting is a method that uses a small signature to
represent a larger data object. Prior studies have proposed two
approaches related to the fingerprinting method: the Finger-
print Expansion (FPE) method and the Fingerprint Partition
(FPP) method. The FPE method is applied in the work of
Manber [5], Spring [2], and Schleimer [6]. This method treats
the fingerprints as anchors in the data series, matches the
anchors between two objects/packets, and expands the anchors
to find the maximum chunk match when two anchors match.
The FPP method is applied in the work of Muthitacharoen
[7], Rhea [8], Tolia [9], Pucha [10], Anand [11], Aggarwal
[3], Bhatotia [4], and Papapanagiotou [12]. The FPP method
treats the fingerprints as break points in the data series, divides
the data series into chunks from the break points, and matches
the chunks within and across objects/packets based on the non-
collision hash value (normally SHA) of each chunk. The FPE
method would find a longer match than FPP once it finds an
anchor match, but it is a slow technique because the program
needs to compare every byte before and after the two matching
anchors until it reaches different bytes. We applied the FPP
method, because it is much faster than FPE, and speed is the
main concern in our work.

There are also different methods that can be used for
selecting fingerprints. A simple approach would be to choose
a fingerprint every several bytes. However, a slight change in
the data would make a significant change in the fingerprint
set. For example, if there is a byte inserted in the data series,
the fingerprints after that insertion would all be shifted left by
one byte. This problem could be solved by using content-
based chunking, which is categorized as MODP (MOD p)
and MAXP (local MAX in p bytes) by Anand [11]. Besides
MODP and MAXP, Aggarwal [3] proposed a method named
SampleByte in the work EndRE. MODP is a method that
chooses a subset of the fingerprints, in which every fingerprint
is selected based on whether the fingerprint modulo p (a
predetermined number) is equal to another predetermined

number (0 as in our work). Manber [5] applied this technique
in his work focused on finding similar files in a large file
system. Spring and Wetherall [2] first proposed applying this
technique for redundancy elimination in network systems.
Bhatotia [4], Muthitacharoen [7], Papapanagiotou [12], Pucha
[10], Rhea [8], and Tolia [9] also adopted the MODP method
or used the tools that adopted the MODP method in their work.
The MAXP method selects a local maximum (or minimum)
in every continuous block with length p. Anand [11], and
Schleimer [6] adopted the MAXP method in their work.
The SampleByte method proposed by Aggarwal [3] adopted
the ideas from both MODP and MAXP. This method skips
p/2 bytes every time when a fingerprint is chosen. Because
MODP uses a pre-determined value p to filter fingerprints,
and the network data could be clustered, it could miss some
redundancy detection opportunities. SampleByte would lose
even more redundancy detection opportunities than MODP.
However, our work adopted the MODP method because it can
provide approximately the same detected redundancy rate as
MAXP, according to the experiment conducted by Aggarwal
[3], and partitions data into fewer chunks, which would make
the critical steps faster.

In other related work [13], Anand described SmartRE, a
software based system that seeks to eliminate redundancy at a
packet level across a network of systems using middleboxes.
The goals of our work is similar to Anand, but differs in two
ways: 1) we use GPUs to speed analysis of the data; and 2)
we do not restrict the data chunk size to packets. The benefits
of our approach are that it seeks to exploit the computational
power of widely available GPUs to help reduce network traffic,
and it also could be applied to data chunks beyond the size of
a packet.

B. Efforts of Acceleration

Previous studies focused on accelerating the redundancy
elimination algorithm to increase the speed of deduplication.
Anand [11] and Schleimer [6] applied MAXP, which is faster
than MODP. Anand [11] applied a Bloom Filter to accelerate
chunk matching, but the Bloom Filter has a relatively high
false positive probability, does not have the information about
chunk location, and has difficulty in the case of deletion.
Aggarwal [3] proposed the SampleByte method, which loses
redundancy detection opportunities. Bhatotia [4] used a GPU
to accelerate the Rabin fingerprint process, but it is mainly
targeted for redundancy elimination in incremental storage,
and it did not address accelerating chunk hashing and matching
procedures. Papapanagiotou [12] and [14] proposed a hybrid
method using both proxy caches and a redundancy elimination
module. In our work, we mainly focus on accelerating the
whole process of redundancy elimination, which is comple-
mentary to the work of Papapanagiotou [12].

Bianco [15], and Kolb [16] proposed a data de-redundancy
approach using Map-Reduce. But their work applied a brute
force approach for object chunking and duplicate chunk
matching, which is inefficient, and used existing Map-Reduce
tools, which may not be perfectly suited for the redundancy

elimination task. Our work uses a Rabin fingerprinting algo-
rithm for object/packet chunking, which is much faster. We
also implemented a Hash-Match approach, which is similar
to this Map-Reduce algorithm, to eliminate the key-value pair
process in Map-Reduce, because the value also performs as the
key in our algorithm. It also eliminates the merge/sort step, and
passes the output of a Hasher to Matchers immediately instead
of passing a list after the Hasher is done. This real-time Hash-
Match communication approach is the key of acceleration.

III. METHODOLOGY

In this section, we first introduce an overview of the data de-
duplication algorithm we used for our acceleration techniques.
Next, we describe the optimization techniques we applied to
accelerate the algorithm.

A. Algorithm Overview

The common procedure for a redundancy elimination algo-
rithm typically consists of three steps: object/packet chunking,
chunk hashing, and chunk matching.

1) Packet/Object Chunking:
In this step, the program reads in the traffic stream either on-
line or off-line, applies a sliding window to scan through the
whole input stream, and marks the beginning of a window as
a fingerprint based on the MODP rule. The fingerprints divide
the stream into chunks.

Algorithm 1 MODP Rabin Fingerprinting Algorithm
window ← 0
fingerprints ← empty set
while window + δ < stream length do

hashValue = ComputeRabinHash(stream[window], δ)
if (hashValue mod σ) = 0 then

fingerprints.Add(window)
end if
window ← window + 1

end while

The procedure of the MODP Rabin fingerprinting algorithm
for object/packet chunking used in this step is briefly shown
in Algorithm 1. During initialization, window is placed at the
beginning of the stream and fingerprints is an empty set.
Then this window is slid to the end of the stream, moving
right by one byte in each step. In each step, the algorithm
also computes the Rabin hash value of the stream that is
covered by the window (we use δ as the size of the window
for the rest of this paper). If the hash value modulo a given
number σ equals 0, the Rabin fingerprinting algorithm marks
the beginning of this window as a fingerprint and then adds
it into the set. We adopted an optimized form of the Rabin hash
algorithm introduced by Broder [17], which takes a reference
table along with the data stream as the input, and provides
better performance than the original algorithm.

Fig. 1. Chunk hashing throughput speed using Rabin, SHA1, and MD5 hashes
(single threaded)

2) Chunk Hashing:
Having partitioned the stream into chunks, a hash value is then
computed for each chunk. The hash function used for chunk
hashing needs to be effective and efficient. A hash function
that can be used in this case should satisfy Equation 1, which
means the number of objects and number of hash values are
within the same order of magnitude, so that the hash collision
probability should be close to 0. The Rabin, SHA1, and MD5
hashes are all good choices for chunk hashing, because they
are all light-weight and have a low hash collision probability.∣∣|Hash(S)| − |S|∣∣

|S|
≈ 0 (1)

To assess the throughput and collision probability of the Rabin,
SHA1, and MD5 algorithms, we tested the throughput (shown
in Fig. 1) and the hash collision rate of three hashing methods
on YouTube video data we generated using the trace file
collected by Zink [18], which is publicly available in the
UMass trace repository [19]. The experiment was conducted
on 6 traces each contained 2 GB data for each hashing method.
We found that the Rabin hash had a 0.1% – 0.2% collision rate
and observed no hash collision using SHA1 and MD5. From
our results, we found that the SHA1 hash had much better
throughput performance than the other two hashing methods.
We found that the Rabin hash could occasionally encounter
hash conflicts, while SHA1 and MD5 did not demonstrate this
problem. Therefore, we chose SHA1 as our chunk hashing
method.

3) Chunk Matching:
In this step, our algorithm stores the hash values computed in
the previous step in a hash table to represent the data chunks
stored in cache. It reports a duplicate chunk when it discovers a
hash value that already exists in the hash table. Hash conflict

should not be a problem because the hash conflict rate of
SHA1 is small enough to be safely ignored according to Spring
[2], and the least recently used hash values in the table are
replaced as the cache is managed.

A cache chunk replacement management method was nec-
essary, given the limited amount of available memory. We
chose Least Recently Used (LRU) as our chunk replacement
algorithm because we believe that repetitive patterns are
demonstrated, which means the redundant chunks are most
likely to be redundant copies of recently accessed data locally.

B. CUDA Acceleration

In the object/packet chunking step, we compute the Rabin
hash for each window, which is (stream length - δ + 1) win-
dows, which makes this step very computationally intensive.
But it also has a great feature in that the Rabin hash function
computes the hash value using exactly δ bytes as input, and
will follow exactly the same mathematical procedure, which
would take about the same amount of time. The features of
the MODP Rabin fingerprinting algorithm in this step makes
it a perfect candidate for CUDA acceleration. Besides, we
also applied CUDA optimization techniques to make the best
advantage of CUDA.

Shared memory access is much faster than global memory
access in the CUDA architecture, which makes it beneficial to
transfer data to shared memory prior to computation. Besides,
we have multiple threads reading from the same memory
location because of the overlap of windows, which causes
access conflicts and hence only one of the threads that access
the same memory slot would run while the others are waiting.
So we made two copies of some input data in shared memory
and aligned the data to avoid half of the access conflict as well
as improve the memory bandwidth. It is impossible to make
more copies of data in shared memory because of the limited
size of shared memory.

The CUDA kernel instructions could be stalled for many
reasons. We ran an un-optimized CUDA algorithm in Visual
Studio and generated Figure 2, which shows the potential
reasons that could slow down CUDA kernel execution. As
shown in Figure 2, the issues that could affect the performance
includes: the speed of instruction fetch and constant miss,
which requires well arranged code order to take full advantage
of the cache; execution dependency and memory dependency,
which requires avoidance or reduction of the scenario that the
threads in GPU depends on one another; and memory throttle
and pipe busy, which requires avoidance or reduction of the
scenario that multiple threads access the same slot of data.

Moreover, in CUDA compute capability 3.5, the maximum
threads per multiprocessor is 2048; the maximum shared
memory per multiprocessor is 49152 bytes; and the maximum
register file size per multiprocessor is 65536 bytes [20]. To
achieve the most threads per multiprocessor, we need to
balance the size of shared memory and registers allocated per
multiprocessor. In this method, we transfer data from global
memory in the GPU to two shared memory slots in each block,
which stores two shifted copies of input data, and used the

Fig. 2. Distribution of stalled warps cycles of each issue stall reason before
optimization

Fig. 3. Distribution of stalled warps cycles of each issue stall reason after
optimization

CUDA kernel registers for the other memory usage. The GPU
threads are synchronized after transferring data into shared
memory, so that a large part of stall reasons for the threads
are switched from memory throttle, memory dependency, and
pipe busy to synchronization, as shown in Figure 3. Although
more warp cycles were stalled in the optimized code, overall
the execution time was reduced by around 10% because a)
the average stall time was reduced, and b) a large part of
issue stalls (synchronization) were under control. A GPU with
CUDA architecture consists of multiple Streaming Multipro-
cessors (SM). Each SM has its independent instruction unit,

TABLE I
GPU OCCUPANCY

Variable Achieved Theoretical Device Limit
Occupancy Per SM
Active Blocks - 4 16
Active Warps 60.09 64 64
Active Threads - 2048 2048
Occupancy 93.89% 100% 100%
Warps
Threads/Block - 512 1024
Warps/Block - 16 32
Block Limit - 4 16
Registers
Registers/Thread - 17 255
Registers/Block - 12288 65536
Registers/SM - 49152 65536
Block Limit - 5 16
Shared Memory
Shared Memory/Block - 1034 49152
Shared Memory/SM - 4136 49152
Block Limit - 38 15

constant cache, texture cache, shared memory, and multiple
Streaming Processors (SP), which have independent registers
and share the “shared memory”. To fully utilize the GPU, we
expect the occupancy of each SM to be as high as possible.
Table I shows the GPU occupancy of our program. According
to the NVIDIA developers’ guide [21], occupancy is “the ratio
of active warps to the maximum number of warps supported
on a multiprocessor of the GPU”, and theoretical occupancy is
“the maximum occupancy given the execution configuration”.
Our work balanced the usage of registers and shared memory
to increase the number of active warps and obtained 93.89%
actual occupancy and 100% theoretical occupancy.

C. Hash-Match

In the chunk hashing and chunk matching step. A simple
approach is to compute the hash value of each chunk, store
the hash values in a hash table, and then detect duplicate
chunks by referring to the hash table. This approach, however,
requires a large number of almost-random memory accesses
from repeated reads of the hash table, which requires an
excessive amount of time. Another idea is to launch multiple
threads to execute chunk matching tasks, which would provide
much better performance. But there exists an upper boundary
of throughput in the approach of simply launching multiple
threads to execute chunk matching tasks, because there would
be a massive amount of time spent waiting to acquire locks
on the hash table, as well as the data structure that stores
chunk hashing results to prevent data race conditions. We
developed our Hash-Match algorithm inspired by Hadoop
Map-Reduce with the goal of parallelizing data chunk hashing
(using Hasher) and data chunk hash matching (using Matcher).
We used our Hash-Match architecture, which significantly
improved the performance of these two steps.

In the Hash-Match architecture, we launched µ threads
of chunk hashing as the Hashers, and γ threads of chunk
matching as the Matchers. Each Matcher i maintains its own

Fig. 4. Influence of the number of Hashers and Matchers on performance

hash table, which only contains hash values h such that (h
mod γ) = i. So that the hash tables perform as a implicit
shuffle step between Hashers and Matchers. We conducted an
experiment using a varying number of Hashers and Matchers
to measure the influence of Hashers and Matchers on the
throughput speed of our algorithm. As shown in Fig. 4, the
throughput speed fluctuates when there are four Hashers, but
stabilized when there are six or more Hashers. The throughput
speed fluctuates in a small range when the number of Matchers
is less than 200, and decreases slowly when the number of
Matchers exceeds 200. An explanation for this is that the
benefit of having more Matchers cannot make up the cost
for the operating system to switch among the threads when
there are too many Matchers running simultaneously. Our
experimental results showed that the algorithm performed best
with µ ∈ [6, 16] and γ ∈ [64, 200]. We used (µ, γ) = (8, 64)
in our experiments.

D. Multi-threaded Pipeline

Pipelining is the work mode in which threads labor simul-
taneously, and pass their output to the next threads as input.
To increase the throughput of our algorithm, we used a multi-
threaded pipeline technique to minimize the idle time of each
device.

Furthermore, we used asynchronous memory transfer, which
allows the program to simultaneously execute CUDA kernel
functions and transmit data between the CUDA kernel and host
memory during the CUDA accelerated object/packet chunking
step. This CUDA stream technique allows the kernel to process
data in the order it is sent by the program. The program
would be transmitting results from the CUDA kernel to the
host memory, and input data from host memory to the CUDA
kernel while it is executing a CUDA kernel function. We
use this technique as the second layer pipeline within the
pipelining of the whole process.

Fig. 5. Throughput speed of HARENS with varying chunk size

Fig. 6. Redundancy rate detected with different restrains on chunk size

E. Optimal Chunk Size

The chunk size in our algorithm is controlled by two
parameters: σ and the minimum chunk size. σ is used to
select fingerprints on the packet/object chunking step. If the
Rabin hash value modulo σ equals 0, the Rabin fingerprint-
ing algorithm marks the beginning of current window as a
fingerprint. We skip one fingerprint if its distance from
the previous partition is less than minimum chunk size. In
this research, we set σ equal to minimum chunk size for
simplicity of analysis. As is shown in Figure 5 and Figure 6,
the throughput peaked at a chunk size of 2048 bytes, and there
is not a statistically significant difference in the reduction rate

Fig. 7. Throughput speed of the four methods

going from a chunk size of 1024 bytes to 2048 bytes.

IV. EVALUATION

We evaluated our method by comparing the throughput and
accuracy of our program with three other benchmark programs
1. The algorithms we evaluated are:

• A naive C++ implementation of the Rabin fingerprint data
de-duplication algorithm

• A multi-threaded pipeline accelerated algorithm
• A CUDA accelerated algorithm
• Our approach, HARENS
We evaluated these methods on a computer with an Intel(R)

Core(TM) i7-5930K CPU @ 3.50 GHz, with 12 cores and 32.0
GB RAM, the Operating system was Windows 8 64-bit. The
GPU installed in this machine was an NVIDIA Tesla K40c.

We generated our experimental data based on YouTube
traces collected by Zink [18], which is publicly available in
the UMass trace repository [19]. We wrote a batch download-
ing script of YouTube video2, inspired by Ficano [22], and
concatenated the video files as our input in the same order the
video files appeared in the YouTube trace collected by Zink
(with repeats when they are present in the trace). We did not
intend to simulate the downloading, where the videos might be
downloaded simultaneously and overlap with each other. As
the size of video files (normally 10-20 MB) is relatively small
in terms of size of the cache (8-16 GB), the video files would
not compete for cache space. Therefore, the order of packets
of the videos would not affect the experimental results.

In Fig. 7 we show the throughput speed of the four methods
we evaluated. According to this graph, the multi-threaded
pipeline accelerated algorithm demonstrated about a 17%

1The source code can be found in https://github.com/ipapapa/HARENS
2The code can be found in https://github.com/KeluDiao/gotube

TABLE II
REDUNDANCY RATE DETECTED

Mean Standard Deviation
Naive C++ 18.50 3.04
Multi-threaded pipeline 18.50 3.04
CUDA 18.50 3.03
HARENS 17.92 2.96

throughput improvement over the naive C++ implementation,
because it overlapped the execution time of each step. The
improvement was not significant because each step was still
time consuming. The CUDA accelerated algorithm demon-
strated about a 3 times throughput improvement over the
naive C++ implementation, because it shortened the time of
object/packet chunking. Our method HARENS demonstrated
about a 14 times throughput improvement over the naive C++
implementation, because it not only shortened the execution
time of object/packet chunking, chunk hashing, and chunk
matching, but also overlapped the execution time of each step.

In Table II, we show the detected redundancy rate of
the trace file using the four methods. The redundancy rates
detected by the naive C++ implementation, the multi-threaded
pipeline accelerated approach, and the CUDA accelerated
approach are similar. Our method detected slightly less re-
dundancy than the other three methods, but it is a side effect
that we can tolerate because of the huge throughput speed
increment.

Our HARENS approach provided a significant improvement
in throughput speed compared with a singular approach of us-
ing a CPU, multi-threaded pipeline, CUDA alone. Our hybrid
approach simultaneously exploits the technologies available
on the system, and represents a novel integrated technique
that can be used for increasing data throughput and reducing
network data redundancy.

V. CONCLUSIONS

In this paper we presented HARENS, an efficient approach
we developed for redundancy elimination in network systems.
We divided the process of redundancy elimination into four
steps: fetching data, partitioning packets/objects chunks, com-
puting SHA1 hash values for chunks, and matching chunks by
comparing hash values. Each step was treated as a Finite State
Machine (FSM), which ran separately but shared data buffers
to synchronize with each other. These FSMs performed the
role of workers in a pipeline, which can keep the tasks running
simultaneously. For the object/packet chunking step, we used
a GPU to accelerate the Rabin fingerprinting algorithm. In
this step, we made use of shared memory to improve memory
bandwidth, applied asynchronized memory transfer to mini-
mize the blocking time of the kernel instructions, and balanced
the usage of GPU registers and shared memory to activate the
largest possible number of threads in execution. Hence we
achieved the highest possible theoretical GPU occupation. For
the chunk hashing and chunk matching step, we applied our
Hash-Match architecture which distributed and scheduled the

work load of these two steps in thousands of threads which
improved the overall performance by about a factor of 14
times.

There are several interesting avenues for future work. We
could explore adopting the hybrid method introduced by Papa-
panagiotou [12], making our redundancy elimination module
work with a proxy cache module, to see if it can improve
performance. We could also explore making better use of
hardware and reduce the time consumption of synchronizing
the FSMs. Besides, we found that there is significant time
spent in lock acquisition and release. A lock-free method
would be another good topic for further investigation.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Tesla K40 GPU used for this
research.

REFERENCES

[1] I. Papapanagiotou, E. M. Nahum, and V. Pappas, “Smartphones
vs. laptops: Comparing web browsing behavior and the implica-
tions for caching,” in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems. New York, NY, USA: ACM, 2012,
pp. 423–424.

[2] N. T. Spring and D. Wetherall, “A protocol-independent technique
for eliminating redundant network traffic,” ACM SIGCOMM Computer
Communication Review, vol. 30, no. 4, pp. 87–95, 2000.

[3] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An End-
system Redundancy Elimination Service for Enterprises,” in Proceedings
of the 7th USENIX Conference on Networked Systems Design and Imple-
mentation, ser. NSDI’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 28–28.

[4] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: Gpu-accelerated
incremental storage and computation,” in File and Storage Technologies,
2012, p. 14.

[5] U. Manber, “Finding Similar Files in a Large File System,” in USENIX
WINTER 1994 TECHNICAL CONFERENCE, 1994, pp. 1–10.

[6] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
Algorithms for Document Fingerprinting,” in Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’03. New York, NY, USA: ACM, 2003, pp. 76–85.

[7] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-bandwidth
Network File System,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp.
174–187, Oct. 2001.

[8] S. C. Rhea, K. Liang, and E. Brewer, “Value-based Web Caching,” in
Proceedings of the 12th International Conference on World Wide Web,
ser. WWW ’03. New York, NY, USA: ACM, 2003, pp. 619–628.

[9] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An Architecture
for Internet Data Transfer,” in Proceedings of the 3rd Conference on
Networked Systems Design & Implementation - Volume 3, ser. NSDI’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 19–19.

[10] H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting Similarity for
Multi-source Downloads Using File Handprints,” in Proceedings of the
4th USENIX Conference on Networked Systems Design & Implementa-
tion, ser. NSDI’07. Berkeley, CA, USA: USENIX Association, 2007,
pp. 2–2.

[11] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in Network Traffic: Findings and Implications,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 1, pp. 37–48, Jun. 2009.

[12] I. Papapanagiotou, R. D. Callaway, and M. Devetsikiotis, “Chunk and
object level deduplication for web optimization: A hybrid approach,” in
Communications (ICC), 2012 IEEE International Conference on. IEEE,
2012, pp. 1393–1398.

[13] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for
coordinated network-wide redundancy elimination,” in Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, ser.
SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp. 87–98.
[Online]. Available: http://doi.acm.org/10.1145/1592568.1592580

[14] R. Callaway and I. Papapanagiotou, “Dynamic caching
module selection for optimized data deduplication,” Sep. 18
2014, US Patent App. 14/059,959. [Online]. Available:
http://www.google.com/patents/US20140281262

[15] G. Dal Bianco, R. Galante, and C. A. Heuser, “A fast approach for
parallel deduplication on multicore processors,” in Proceedings of the
2011 ACM Symposium on Applied Computing, ser. SAC ’11. New
York, NY, USA: ACM, 2011, pp. 1027–1032. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982411

[16] L. Kolb, A. Thor, and E. Rahm, “Dedoop: Efficient deduplication with
hadoop,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1878–1881, Aug.
2012. [Online]. Available: http://dx.doi.org/10.14778/2367502.2367527

[17] A. Z. Broder, “Some applications of Rabins fingerprinting method,” in
Sequences II. Springer, 1993, pp. 143–152.

[18] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local:
Youtube network traffic at a campus network: measurements and impli-
cations,” in Electronic Imaging 2008. International Society for Optics
and Photonics, 2008, pp. 681 805–681 805.

[19] UMass Trace Repository. http://traces.cs.umass.edu/index.php/ Net-
work/Network. Accessed:2015-10-09.

[20] “CUDA Toolkit Documentation,” https://docs.nvidia.com/cuda/cuda-c-
programming-guide/#kernels, accessed:2015-09-24.

[21] “NVIDIA Nsight Development Platform, Visual Studio Edition User
Guide,” http://http.developer.nvidia.com/NsightVisualStudio/2.2/Docu-
mentation/UserGuide/HTML/Content/Profile CUDA Settings.htm,
accessed:2016-05-24.

[22] N. Ficano, “pytube,” https://github.com/nficano/pytube.git, 2015.

