
A Self-Learning Scheduling in Cloud Software
Defined Block Storage

Babak Ravandi
Computer and Information Technology

Purdue University
Email: bravandi@purdue.edu

Ioannis Papapanagiotou
Platform Engineering

Netflix Inc.
Email: ipapapa@ncsu.edu

Abstract—Software Defined Storage (SDS) separates the con-
trol layer from the data layer allowing the automation of
data management and deployment of Commercial Off-The-
Shelf (COTS) storage media rather than expensive traditional
hardware-based solutions. Cloud block storage services lack an
SDS framework that allows customization of block storage, policy
enforcement, automate provisioning, and storage management.
SDS decreases the human intervention and improves the resource
utilization. Moreover, SDS allows cloud tenants to define cus-
tomized functionalities based on their needs with guaranteed
performance and high availability that meets Service Level
Agreements (SLAs). However, maintaining SLAs requirements
in cloud block storage is challenging due to the storage cluster
features, the workload interference, the workload characteristics
and other indirect related latent variables. To address the
mentioned issues, cloud providers often over-provision the storage
resources.

Moving towards SDS, we initiate a framework for cloud block
storage as an active storage system. Our framework provides
customization of block storage services and optimized scheduling
decisions based on the workload characteristics and performance
of the underlying data layer leveraging a self-learning scheduler.
The proposed scheduler treats the storage backend nodes as a
black box and requires zero knowledge of their internal states.
We showcase a practical application of the proposed scheduler
in our private OpenStack deployment.

I. INTRODUCTION

Software Defined Storage (SDS) reduces the complexity
of storage management in the cloud. SDS decouples the
underlying storage hardware from the software that manages
it [1]. The abstraction of storage from hardware prevents
dependencies on a specific hardware or software. Developing
an SDS framework for block storage systems received less
attention within the research community compared to other
types of storage systems.

As our first step towards developing an SDS for block
storage, we propose and implement BSDS (Block Software
Defined Storage), a novel scheduler to provide Quality of
Service (QoS) for block storage systems without the need
to have any knowledge of the underlying hardware. BSDS
is an attempt to develop a black box self-learning scheduler
that decouples the control from the storage layer. In our
previous work, we developed a block storage simulator to
assess the efficiency of using machine learning in making
scheduling decisions [2]. Our workload-aware scheduler was
able to maintain the QoS up to 98% of the simulation duration.

The fact that cloud resources are shared between multiple
consumers makes it difficult for cloud vendors to maintain
Service Level Agreements (SLAs) and its requirements Ser-
vice Level Objectives (SLOs). Currently, from 57 drivers con-
tributed to the OpenStack Cinder service only 10 drivers sup-
port QoS and they are designed for specialized hardware [3].
Such as the Dell EMC ScaleIO that integrates the EMC storage
technologies with scalable multi-tenant cloud infrastructure
[4]. ScaleIO contributed a driver for OpenStack with QoS
support that operates on RHEL/CentOS, SLES and Ubuntu
operation systems [5]. Our machine learning approach allows
BSDS to learn the behavior of each backend independent of
the underlying physical hardware. Therefore, BSDS enables
QoS for commodity hardware as well. Also, BSDS can get
integrated with existing storage solutions with built-in QoS
support such as the NetApp SolidFire [6].

This work is the extension of our previous research [2]
regarding the aforementioned scheduling issues of cloud block
storage when developing an SDS framework for block storage.
Such an approach enables cloud storage providers to provide
guaranteed SLAs to customers and reduce the number of
backend storage nodes. Another advantage of the proposed
solution is the automatic migration of the risk factors. For
example, a network traffic fluctuation could adversely increase
the rate of SLA violations. The following recaps the main
contributions of this work:

• Propose an SDS framework for block storage systems
and investigate the utilization of our self-learning black
box scheduler in a cloud deployment. This removes the
requirement that the scheduler must make independent
decisions per unit time.

• Treat backend storage systems as a black box that
does not provide the internal states of backends to the
scheduler. Thereby, the scheduler can make SLA-aware
decisions independent of the vendor specific information.

• Provide the ability to control the rate of SLA violations
as well as fairness in resource provisioning, i.e., optimize
the QoS while maximizing the resource allocation.

Our contributions above are supported with experimental
results. The rest of the paper is organized as follows: Section
II provides background and related work, Section III briefly
discusses the scheduling algorithms in the current OpenStack



block storage system, Cinder, along with its weaknesses.
Section IV describes the BSDS architecture and presents
its learning components and the technical implementation
challenges. Section V introduces our experiments design and
results to evaluate BSDS performance. Lastly, the section VI
concludes our research.

II. BACKGROUND AND RELATED WORK

In distributed systems, the data layer is usually recognized
as the main bottleneck [7]. Several factors have a direct
relationship in the performance of a block storage system. We
categorize them into two categories. One which is related to
the volume, (a) the create-volume request workload, and (b)
the storage I/O workload once the block has been allocated.
The second category is related to the performance of the block
storage system such the overall status and performance of the
cluster. The create-volume workload depends on the pattern
of detach/attach requests issued by virtual machines to access
the virtual volumes. The storage I/O workload depends on the
applications that are using the attached volumes to perform
data operations. The applications I/O usage have different
patterns such as sequential, random read/write, diurnal I/O,
etc. The status of the cluster is affected by the type of
storage operations such as the garbage collection activity in
the SSD drives, the compactions, the concurrent maintenance
operations, the disks flapping, the network traffic fluctuations
and the workload interference by collocating workloads. These
factors affect the QoS and increase the complexity of designing
a workload-aware scheduler for block storage systems. Such
issues are not present in VM or container scheduler as some
of the computations and resources can be strictly isolated.

Due to the aforementioned reasons, there has been a tremen-
dous effort in improving performance of the storage systems.
Black box models offer most promising solutions since they
require minimum interactions with the underlying storage de-
vices and they are designed to predict and adopt the workloads
dynamics. Yin et al. explored the effectiveness of black box
performance models in automating storage management using
regression trees for modeling. They used a real storage system
running on a RedHat Server Linux Kernel to collect data
and perform experiments [8]. Zhang and Bhargava automated
the parameters tuning of disk schedulers by introducing self-
learning schemes and performed experiments on the Linux
kernel [9]. Skourtis et al. acknowledged the issues with shared
storage such as dealing with multiple type of workloads and
performance targets. They proposed QBox (Queue Box), a
black box controller that provides isolation between clients by
forwarding the stream requests to the disks using the Kernel
Asynchronous I/O (AIO) on Linux [10]. However, QBox
approach requires to place a controller between the storage
disks and the clients that might be impractical for the current
datacenters to adopt. To compare, our proposed approach is
designed for the cloud environment and utilizes the storage
design of a cloud infrastructure that organically provides levels
of isolation. Also, the installation process could be integrated
with the currently popular configuration management tools

such as the Puppet and Chef that increases its adaptability
[11, 12].

In response to the aforementioned challenges, we worked
on the scheduling issues in the cloud storage domain. We
introduced an SLA-aware scheduler that can provide I/O
performance management for block storage through schedul-
ing policies leveraging a Multi-Vector Bin Packing (MVBP)
algorithm. The proposed solution achieved more than 20%
improvement in reducing the rate of SLA violations [13].
However, the scheduler assumed to have knowledge of the
internal states of the underlying hardware and the cluster
architecture. Hence, the solution was not adjustable to many
types of block storage systems. We then investigated schedul-
ing decisions that account multiple SLOs to scale up to
concurrent arrival requests [14]. Subsequently, we designed
Serifos [15] a workload consolidation and load balancing
for SSD based storage systems and performed an empirical
evaluation of IaaS infrastructures [16]. We finally proposed a
self-learning scheduler that treats the backend nodes as a black
box. This was a major step towards assuming a black box
approach. We used simulations and block I/O traces to assess
the performance of the machine learned scheduling [9].

III. OPENSTACK CINDER

Storage in OpenStack cloud environment is broken into
two categories Ephemeral and Persistent. Ephemeral storage
example is the disks associated with virtual machines, and
they could get terminated if a virtual machine is deleted.
Conversely, the persistent storage lives regardless of the virtual
machines state because a persistent storage is handled outside
of the virtual machines scope. Block storage is a type of
persistent storage, and it provides virtual volumes that can
get attached to the virtual machines while the volumes are
physically located on storage backends. Various storage plat-
forms such as Ceph [17] and NetApp [18] can be connected
to Cinder as a storage backend in addition to the local Linux
storage.

Cinder is the block storage service of OpenStack with three
main components: Cinder API, Cinder Scheduler, and Cinder
Volume [19]. Cinder API is a communication engine allows
users and services access Cinder services through RESTful
API. The Cinder scheduler decides on which backend a create-
volume request should be allocated. Lastly, the Cinder volume
component is a set of drivers designed to provide virtual vol-
umes on a physical device, for example, the Logical Volume
Management (LVM). A company providing specialized block
storage hardware needs to develop a driver compatible with the
Cinder volume component. Virtual volumes can dynamically
get attached or detached to virtual machines, and they can
be used as a second storage or boot device. Cinder-scheduler
workflow contains two phases that are presented in Fig. 1:

i. Filtering phase: Upon receiving a create-volume request,
the users’ preferred filter will compare the request param-
eters (e.g. capacity, read IOPS and write IOPS) with the
state of each backend to eliminate the backends that do
not meet the request SLOs. The goal is creating a set of



Fig. 1. Workforce of OpenStack Cinder consisting the filtering and weighting
phases.

backends as candidates for the final scheduling decision.
For example, in the Fig. 1 if a create-volume request
asks for 50 GB capacity, then the filtering module will
eliminate the Hosts 2 and 4 because they do not have
enough space.

ii. Weighting phase: The goal of weighting phase is selecting
the best backend within the candidate set received from
the Filtering phase. The users’ preferred weigher ranks
each backend based on their available resources. Then, a
backend with the most available resources will be selected
as the final scheduling decision. For example, in Fig. 1
the Host 5 is chosen because it has the most available
capacity within the candidates set.

The Cinder default filter and weigher only consider the
available capacity of backend nodes to make a scheduling
decision. BSDS is designed to recognize the available read
and write IOPS of the nodes to provide QoS.

IV. ARCHITECTURE

This section presents the BSDS architecture, the machine
learning approach and the technical implementation chal-
lenges.

A. Design Objectives

Figure 2 shows the architecture of BSDS with the gray
boxes depicting the BSDS modules and white boxes showing
Cinder modules. The blue arrows indicate communications
between BSDS modules and the black arrows indicate the
Cinder scheduling workflow that starts with a virtual machine
issuing a create-volume request. The dotted arrows are I/O
pipes that connect the attached virtual volumes to the virtual
machines through the Cinder volume service.

BSDS consists of two main components. First, the BSDS
weigher and filter modules implemented based on OpenStack’s
Cinder interfaces. Second, the BSDS Agent that is installed
on the cloud VMs and is responsible for measuring the

Fig. 2. BSDS high level architecture overview. The gray boxes are BSDS
modules and white boxes are Cinder components. Cinder scheduling workflow
starts from a virtual machine issuing a create-volume requests.

available read/write IOPS of every attached volume to a VM
i.e. executing the resource evaluation process. The measured
available read and write IOPS will be stored in the Log DB
module to generate the training dataset.

The process of scheduling starts upon receiving a create
volume request. First phase is Cinder filtering that activates the
BSDS filter module. Upon activation, the Self-learning Core
create and cache classification models for each backend node
using the training data stored in the Log DB. Then, using the
models the available expected level of SLO-violation for each
backend is predicted. Next, the backends that do not satisfy
the requested SLOs will be filtered. Algorithm 1 demonstrates
the process. The algorithm creates and maintains a separate
classifier for each backend because a backend could have a
unique behavior depending on its configurations and workload.
Hence, it is not practical to predict all the backends behaviors
with a single learning model.

Second phase is Cinder Weighting that activates BSDS
weigher with the task of selecting a backend with least prob-
ability of causing read/write-SLO-IOPS violations among the
eligible backends. Variable pref.IsReadPriority determines
SLO-read-IOPS has more priority (explained with details
in the next section). Algorithm 2 demonstrates the BSDS
Weigher process.

B. Self-Learning Approach

Self-learning approach allows treating the backends as a
black box. In other words, BSDS ensures the QoS without
requiring to have any knowledge of the underlying hardware
state. Table I presents the classification features. The clock
feature reflects the time that a performance evaluation is



Algorithm 1 BSDS Filter
1: procedure FILTERING(V olRequest)
2: Classifiers← Run BuildClassifiers(Backends)
3: read can← {∅}
4: write can← {∅}
5: for each classifire ∈ Classifiers do
6: pred← classifire.Predict(V olRequest)
7: if pred satisfy V olRequest.readSLO then
8: read can← read can ∪ prediction.Node
9: end if

10: if pred satisfy V olRequest.writeSLO then
11: write can← write can ∪ prediction.Node
12: end if
13: end for
14: return read can,write can
15: end procedure

Algorithm 2 BSDS Weigher
//Pref denotes the user preferences

1: procedure WEIGHTING(read can,write can)
2: final can← read can ∩ write can
3: final decision← none
4: if final can is equal ∅ then
5: if pref.IsReadPriority = True then
6: final decision← Best(read can)
7: else
8: final decision← Best(write can)
9: end if

10: else
11: final decision← Best(final can)
12: end if
13: if final decision is none then
14: return ‘reject‘
15: end if
16: return final decision
17: end procedure

executed to measure the available read/write IOPS of a virtual
volume. Considering the time as a feature in our learning
model allows have the periodic performance fluctuations in
account while making scheduling decisions (e.g. rush hours
and regular maintenance). The remaining variables are col-
lected by aggregating the performance evaluation results in a
given clock.

The TotReqReadIOPS and TotReqWriteIOPS features ac-
count for the total number of requested read/write SLOs from
a backend in a given clock. Similarly, the num variable is
the total number of live volumes in a given clock. Lastly,
the vioGroup is the model response variable and represents
the level of SLO-IOPS violation on a clock. The vioGroup
feature is the discretized transformation of the number of
the performance evaluation records that identified an SLO
violation in a given clock. We decided to discretize the number
of SLO violations because the nature of proposed scheduling

issue falls into supervised learning since the learning features
are known. The correctness of discretization in supervised
learning is proven by Dougherty et al. [20].

TABLE I
LEARNING FEATURES

Field Description

clock the Performance Evaluation Record timestamp

TotReqReadIOPS Total requested read-IOPS of live volumes

TotReqWriteIOPS Total requested write-IOPS of live volumes

num Number of live volumes

vioGroup SLO-IOPS violation groups (defined in Table II)

C. Candidate Learning Algorithms

This research evaluates the C4.5 Decision Tree and
Bayesian Network learning algorithms. In our previous work
we compared the accuracy of the C4.5 Decision Tree, Support
Vector Machine (SVM), Naı̈ve Bayes and Bayesian Network
K-fold validation on the test dataset [2]. The results showed
linear boundary algorithms (SVM and Naı̈ve Bayes) per-
form poorly, but algorithms with highly non-linear decision
boundary perform better (C4.5 and Bayesian Network). We
omitted the logistic regression and K-nearest neighbor (KNN)
algorithms because the training data does not fit well in them,
and KNN is not lightweight. For those reasons, we do not
evaluate the SVM and Naı̈ve Bayes. Below, we present a brief
discussion on the candidate machine learning algorithms.

• C4.5 Decision Tree: C4.5 builds a classifier tree based
on the ID3 algorithms. Each leaf of the tree determines
a class of prediction and nodes split the feature domains.
Decision trees are not probabilistic based learning mod-
els. However, there are probabilistic models that incor-
porate decision trees. We use the Probability Estimation
Tree to have the final predictions ranked as probabilities
of classes [21].

• Bayesian Network (BN): BN is a type of probabilistic
graphical model defined on a directed acyclic graph
(DAG). BN applies the Bayes’ theorem on the conditional
probability distributions to create connections between
the learning features and propagate changes in the values
of those features in the network [22].

D. BSDS Configurations

BSDS configurations allow a user to define their proffered
level of QoS. Table II presents the main settings. The Vio-
lationGroups represents intervals to discretize the number of
violations happened on a given clock that defines a domain
for the response variable, vioGroup. IsReadPriority determines
preventing read-SLO-IOPS has more priority over write-SLO-
IOPS. For example, in a case that none of the backends can
satisfy the write-SLO-IOPS and the IsReadPriority is enabled,
BSDS will accept the request if a backend could satisfy the
requested read-SLO-IOPS. The MLAlgorithm defines which
classification algorithm BSDS may use to create the learning
models. Lastly, the AssessmentPolicy sets in what level the



TABLE II
BSDS CONFIGURATIONS

Parameter Description

ViolationGroups
Defines intervals to discretize the number of

SLO. i.e. G1: 0 violations; low violation rate.

IsReadPriority if true, satisfying read-SLO is priority

MLAlgorithm Learning algorithm

AssessmentPolicy

#1
EfficiencyFirst

Accept if with 80% chance,
the allocation will not

cause any SLO violations.

#2
QoSFirst

Accept if with 90% chance,
the allocation will not

cause any SLO violations.

#3
StrictQoS

Accept if with 99% chance,
the allocation will not

cause any SLO violations.

QoS needs to be maintained. The more strict an assessment
policy is, the less SLO-IOPS violation is guaranteed. However,
the requests rejection rate will increase to preserve IOPS
resources.

E. Technical Challenges

We used the FIO software (Flexible I/O Tester synthetic
benchmark) to measure the available read/write IOPS of
virtual volumes [23]. However, running concurrent FIO tests
on multiple virtual volumes that are attached to a VM can
cause hash inconsistency between the FIO jobs. Therefore
an isolated environment is required to concurrently run the
FIO jobs on multiple virtual volumes to be able to generate
synthetic I/O workloads and measure the available IOPS of
those volumes. To address the issue, we used a Docker-
containerized environment to force isolation within multiple
concurrent FIO executions. We used the ClusterHQ FIO-Tool
that is a Dockerized FIO Container tool to run FIO jobs [24].
Each virtual volume path was mounted to a Docker running
the ClusterHQ FIO-Tool container to execute the required set
of FIO jobs.

V. EXPERIMENTS

In this section, we analyze the performance of BSDS
implemented in our private OpenStack cloud.

A. Experiment Design

We used 6 VMWare VSphere ESXi 6.0 Hypervisors to
implement our private OpenStack cloud using the OpenStack
Mitaka release. The deployment had 9 storage backend nodes
running on the Ubuntu Server 16.04, and each node had 4 GB
RAM memory and 2 cores. Two nodes had Western Digital
Red 1TB NAS 5400 RPM SATA6 Gb/s 64MB Cache hard
drives. Plus other three nodes with Western Digital Caviar Blue
250GB SATA3 Gb/s 7200 RPM 64MB Cache hard drives and
the five remaining nodes had Seagate Barracuda 1TB SATA6
Gb/s 7200 RPM hard drives. On average, the hard drives
achieved up to 286 write IOPS and 1772 read IOPS throughput
measured by the aforementioned resource evaluation process.

During the experiment, twelve Ubuntu Server 16.04 virtual
machines were requesting maximum 3 Cinder volumes every
200 seconds up to 400 successful create-volume requests. The
volume requests were repeated sequentially after a volume is
detached. The requests Capacity, read-SLO-IOPS, and write-
SLO-IOPS were randomly chosen using the uniform random
distribution within the following sets of values [5GB, 10GB,
15GB], [600, 700, 800] and [2050, 350, 400] respectively.
Each volume lifetime was randomly chosen between [160,
180, 200] seconds.

We used the FIO software to generate multiple types of
storage workload depicted in the Table IV. FIO is used for
two purposes. First, to generate a synthetic storage workload
(i.e. backup a video streaming server). Second, to execute the
resource evaluation process with the goal of sampling the
available read and write IOPS of a virtual volume. Therefore,
collect the training data and model the behavior of each
backend.

TABLE III
CONFIGURATION PARAMETERS FOR THE EXPERIMENT

Parameter Value Description

ViolationGroups
V1: (0); V2: (1 or 2)
V3: (3 or 4) V4: (5+)

violation classes
for the experiments

IsReadPriority if true, satisfying read-SLO is priority

MLAlgorithm C4.5 Decision tree

AssessmentPolicy CinderDefault, EfficiencyFirst, QoSFirst, StrictQoS

We conducted two experiments to evaluate BSDS. First
experiment used a sequential read workload to benchmark
a media streaming scenario. The second experiment used
a random read/write workload to create a backup server
scenario. The workloads are synthetic and generated using FIO
software. Table IV represents the workload generation details.

B. Tune Primary Parameters

Table III shows the primary configurations used within all of
the experiments. For example, assume on a certain clock the
executions of Resource Evaluation process identifies 3 SLA
violations on a volumes. Then, the scheduler discretize the
value into the V3 category as the VioGroup for its respective
Resource Evaluation sample.

C. Experiment Results

Each experiment conducted in two modes: training and
decision. The goal of training mode is collecting the available
read/write IOPS of each live volume to create a training dataset
for each backend nodes. Since measuring the available IOPS
on every second is not practical, we perform the resource eval-
uation process periodically based on the users’ configurations.

The decision mode activates BSDS filter and weigher mod-
ules to enable QoS assurance for read/write IOPS. Then,
classification models were created for each backend using the
training dataset obtained from the training mode. Lastly, the



TABLE IV
FIO CONFIGURATION TYPES

FIO Config For Restart Interval (seconds) I/O Type Read / Write block size size

Resource Evaluation (Sampling) Process 20 mix random read/write 70% / 30% 4k 40 mb

Experiment I: Sequential Read 4 Sequential reads 100% / 0% 4k 48 mb

Experiment II: Random Read/Write 4 mix random read/write 50% / 50% 4k 128 mb

Fig. 3. SLO IOPS Violations Percentage for Read/Write using Decision Tree

Fig. 4. SLO IOPS Violation Percentage for Each Assessment Policy using
C4.5 Decision Tree

prediction values were assessed based on the assessment poli-
cies to achieve the expected level of QoS. In our experiment
we defined three policies represented in the Tables II and III.

Our experiment used the Bayesian Network and C4.5 Deci-
sion Tree machine learning algorithms to make SLA-aware
scheduling decision [25]. Based on our previous work the
non-linear learning algorithms accuracy is higher than linear
algorithms [2]. Therefore, we decided to use those algorithms.

Figure 3 and 4 shwocase the percentage of SLO-IOPS
violations and the rejection rate compared to the training mode
using the C4.5 Decision Tree for the sequential read and
random read/write workloads. The experiments are configured
to have higher priority for ensuring the read-SLO-IOPS over

Fig. 5. SLO IOPS Violations Percentage for Read/Write using Bayesian
Network

Fig. 6. Simulation results

write-SLO-IOPS. This is the reason for having more write-
SLO-IOPS violations. The graphs indicated that using the
Strict QoS policy BSDS can lower the rate of read-SLO-
IOPS violation to 3% with the trade off as rejecting 74.55%
of overall create-volume requests. In contrast, using the QoS
First maintains 33% violation rate while rejecting 13.4% of
the create volume requests.

Figures 5 and 6 present the performance of BSDS while
using the Bayesian Network. Overall, the C4.5 Decision
Tree and Bayesian Network were able to control the SLO-
IOPS violation rate around the same level for both random-
read/write and sequential-read workloads. On the other hand,
for the sequential workload the Bayesian network performs
better than C4.5 Decision Tree.



Fig. 7. Simulation Results Based on Our Previous Work [2]

D. Comparison with Simulation Results

Our previous work assessed the proposed black box self-
learning approach using simulation [2]. In this section, we
compare the results from simulation and BSDS implementa-
tion. We performed simulations with workloads induced by
real-world block-level traces of an enterprise data center. The
results showed that self-learning scheduling could mitigate
the unexpected resource fluctuation and dynamically adapt to
various workloads. Figure 7 presents the SLO-IOPS violations
using the simulation. Both read and write I/O were simulated
as a single variable in the simulation. Comparisons between
the Figure 7 and Figures 3 and 5 (SLO-IOPS violations using
Bayesian and Decision Tree algorithms respectively) indicate
the following: (a) using the Bayesian network the experiment
results shows the same pattern as the simulation for both read
and write IO measurements (b) however, using the Decision
Tree algorithm the experiment results shows more fluctuations
compared to the simulation results. The similarity between the
results of simulation and implementation shows that the black
box approach is effective in designing schedulers for cloud
storage systems.

VI. CONCLUSION

In this paper, we introduced the Block Software Defined
Storage (BSDS) as a step towards designing Software Defined
Storage (SDS) systems for cloud block storage. BSDS is
based on a self-learning black box scheduler that provides
Quality of Service (QoS) without requiring any knowledge
of the underlying storage hardware, as an alternative for the
expensive specialized equipment that currently is the only
QoS based solution in block storage systems. However, BSDS
provides QoS on deployment of Commercial Off-The-Shelf
(COTS) storage media. We integrated BSDS with OpenStack
Cinder to assess its performance. We defined three policies to
control the expected level of QoS. The policies are StrictQoS,

QoSFirst and EfficiencyFirst that guarantee the level of QoS
from strict to efficient respectively. Strict level means having
the minimum chance of having Service Level Objectives
(SLO) violations occurrence. In contrast, the efficient level
offers a balance between the IOPS resource reservations
and the chance of having SLO violations occurrence. We
performed experiments using Bayesian Network and Decision
Tree classifiers and BSDS was able to control the percentage
of read/write-SLO violations up to 3%, 21% and 32% using
StrictQoS, QoSFirst and EfficiencyFirst respectively.

In the future, we plan to work on the dynamic migration
of volumes and implementing feedback learning to address
sudden changes in the rate of SLO violations.

REFERENCES

[1] J. Samp, P. Garca-Lpez, and M. Snchez-Artigas, “Vertigo:
Programmable micro-controllers for software-defined object
storage,” in 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), June 2016, pp. 180–187.

[2] B. Ravandi, I. Papapanagiotou, and B. Yang, “A black-box
self-learning scheduler for cloud block storage systems,” in
2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), June 2016, pp. 820–825.

[3] “Cinder support matrix.” [Online]. Available:
https://wiki.openstack.org/wiki/CinderSupportMatrix.

[4] “Software defined block storage - scaleio.” [Online]. Available:
https://www.emc.com/en-us/storage/scaleio/index.htm.

[5] “Emc scaleio block storage driver configuration.”
[Online]. Available: https://docs.openstack.org/draft/config-
reference/block-storage/drivers/emc-scaleio-driver.html.

[6] “Solidfire all-flash array.” [Online]. Avail-
able: http://www.netapp.com/us/products/storage-
systems/solidfire/index.aspx.

[7] J. Shafer, “I/o virtualization bottlenecks in cloud computing to-
day,” in Proceedings of the 2nd conference on I/O virtualization.
USENIX Association, 2010, pp. 5–5.

[8] L. Yin, S. Uttamchandani, and R. Katz, “An empirical ex-
ploration of black-box performance models for storage sys-
tems,” in Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE
International Symposium on. IEEE, 2006, pp. 433–440.

[9] Y. Zhang and B. Bhargava, “Self-learning disk scheduling,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 21, no. 1, pp. 50–65, 2009.

[10] D. Skourtis, S. Kato, and S. Brandt, “Qbox: Guaranteeing i/o
performance on black box storage systems,” in Proceedings of
the 21st international symposium on High-Performance Parallel
and Distributed Computing. ACM, 2012, pp. 73–84.

[11] “Puppet. cloud management solution.” [Online]. Available:
https://puppet.com/.

[12] “Chef. continuous automation for continuous enterprise,” [On-
line]. Available: https://puppet.com/.

[13] Z. Yao, I. Papapanagiotou, and R. D. Callaway, “SLA-aware
resource scheduling for cloud storage,” in IEEE International
Conference on Cloud Networking (CloudNet). IEEE, 2014.

[14] ——, “Multi-dimensional scheduling in cloud storage systems,”
in International Communications Conference (ICC). IEEE,
2015.

[15] Z. Yao, I. Papapanagiotou, and R. Griffith, “Serifos: Workload
consolidation and load balancing for SSD based cloud storage
systems,” arXiv preprint arXiv:1512.06432, 2015.

[16] Z. Yao and I. Papapanagiotou, “A trace-driven evaluation of
cloud computing schedulers for IaaS,” in International Com-
munications Conference (ICC), 2017 IEEE, May 2017.



[17] “Block device and openstack,” [Online]. Available:
http://docs.ceph.com/docs/master/rbd/rbd-openstack/.

[18] “Netapp data management and cloud storage solutions.” [On-
line]. Available: http://www.netapp.com/us/index.aspx.

[19] “Openstack cinder,” [Online]. Available:
https://wiki.openstack.org/wiki/Cinder.

[20] J. Dougherty, R. Kohavi, M. Sahami et al., “Supervised and
unsupervised discretization of continuous features,” in Machine
learning: proceedings of the twelfth international conference,
vol. 12, 1995, pp. 194–202.

[21] F. Provost and P. Domingos, “Tree induction for probability-
based ranking,” Machine Learning, vol. 52, no. 3, pp. 199–215,
2003.

[22] J. Pearl, “Reverend Bayes on inference engines: A distributed
hierarchical approach,” in AAAI, 1982, pp. 133–136.

[23] “Fio - flexible i/o tester synthetic benchmark,” [Online]. Avail-
able: https://github.com/axboe/fio/blob/master/HOWTO.

[24] “Clusterhq docker hub,” [Online]. Available:
https://hub.docker.com/r/clusterhq/fio-tool/.

[25] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised
machine learning: A review of classification techniques,” In-
formatica, vol. 31, pp. 249–268, 2007.


