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Abstract—A major requirement of cloud block storage services
is guaranteed performance and high availability. However, offer-
ing guaranteed Service Level Agreements (SLAs) in cloud block
storage services is often not straightforward. Cloud block storage
performance may be affected by physical disk background oper-
ations, like garbage collection, storage cluster features, workload
interference and the chraracteristcs of the workload itself. On the
other hand, the underlying physical storage drives do not expose
the internal states to higher level block storage service offerings.
Therefore, SLAs can only be satisfied by over-provisioning the
storage resources. To address this issue, we propose a self-
learning scheduler that can dynamically adapt based on the
workload, and efficiently provide a scheduling decision with
zero knowledge of the underlying hardware. We study two
candidate algorithms based on Feedback learning and Two-Phase
learning. We used workloads that were deducted from real-world
block-level traces of an enterprise data center, and conducted
extensive simulations. Our results indicate that the self-learning
scheduling approach can reduce the SLA violations by mitigating
the unexpected resource fluctuation, and the scheduler can also
adapt dynamically to various workloads.

I. INTRODUCTION

The cloud computing model decouples physical resources
from the logical services. It provides dynamic provisioning,
high flexibility, scalability and significant cost reduction [1].
The cloud vendor and consumer relationship is administered
by Service Level Agreements (SLAs), with each specific
requirement defined in an SLA called Service Level Objective
(SLO). In the case of cloud block storage, the performance
is measured by parameters such as Input/Output Operations
Per Second (IOPS) and the latency distributions (identified by
the corresponding percentiles). However, the challenge is that
the dynamic nature of the cloud and the stochastic workloads
make it difficult to provide a meaningful SLA in terms of the
availability and the cost of services.

Significant amount of research has been done in the area of
cloud computing resource provisioning (i.e. virtual machine
allocation), yet cloud storage has received little attention [2].
In fact, in distributed systems, the storage performance tends
to be the main bottleneck. The performance of the system
can be directly affected by the patterns of the workload and
concurrent workloads. In fact, workloads may follow different
patterns, like diurnal, continuous, etc. I/O throughput and
latency fluctuations may be caused by internal operations
like garbage collection, compactions, flapping disks, or even

maintenance changes in the underlying hardware, etc. Those
operations may affect the QoS. At the same time, a scheduler
must be configurable.

In our previous work [2], we designed an SLA-aware
scheduler and corresponding scheduling policies that can en-
able I/O performance management for block storage systems.
We achieved more than 20% improvement in reducing the
SLA violations rate by leveraging a Multi-Vector Bin Pack-
ing (MVBP) algorithm. The scheduler was assumed to have
knowledge of the underlying storage cluster architecture and
hence, was not adjustable or scalable to different types of block
storage clusters. Thereupon, we investigated the scheduling
challenges [3] that are subject to multiple SLOs constraints
and concurrent arrival of requests [4]. In this work, we assume
that the scheduler has no knowledge of the internal structures
of the backend systems (black-box approach); hence, it can be
pluggable in different data center deployments. To investigate
the performance and accuracy of the scheduling decisions, we
used a number of workloads deducted from block-level traces
collected from an enterprise data center. In the data center,
Windows-based servers were running typical enterprise storage
services such as distributed file sharing and web server [5].

Our design is based on a black-box approach, i.e. the perfor-
mance of the scheduler is not affected by the internal state or
operation of the storage array. In fact swapping the underlying
hardware would only require re-training the algorithm. We
use Feedback learning to identify and absorb unexpected
changes in the workload patterns. At the same time, we
propose a scheduling design with configurable components to
dictate the behaviors of the learning algorithms. Hence, we
enable cloud service providers to provide SLA guarantees,
reduce the number of active storage nodes, and mitigate risk
factors, such as traffic fluctuations that could adversely affect
the SLA violation rate. We evaluate the performance of the
proposed scheduler through extensive simulation based on the
OpenStack block storage service, Cinder [6].

II. OPENSTACK CINDER SCHEDULING

OpenStack provides a large pool of services such as
compute (named Nova), networking (Neutron), object stor-
age (Swift), block storage (Cinder), identity (Keystone), etc.
through a web-based dashboard, command-line, and RESTful
APIs. It is the most widely used support platform for building



and managing an Infrastructure as a Service (IaaS) [7]. Hence,
we architected our scheduling proposal based on it. However,
the ideas can be embraced by other platforms as well.

Cinder handles creation, attachment and detachment of
volumes to virtual machines [6]. In addition to local Linux
storage, various storage platforms such as Ceph [8] can be
connected to Cinder as backend. Access to Cinder volumes is
only associated with guest virtual machines. Cinder consists
of 3 components: (a) Cinder-APIs: provides RESTful APIs to
access cinder functionalities; (b) Cinder-volumes: volumes are
dynamically attached to VM and can be used as a data storage
device or boot device; (c) Cinder-scheduler: The scheduler
decides which backend storage unit is selected to provision
the requests, based on the state of the storage system and the
request. Cinder-scheduler workflow contains two phases:

i. Filtering phase: upon receiving a create-volume request,
a filter will compare the request parameters with the state
of each backend and eliminate backends that do not meet
the request properties. The goal is creating a candidate
list for final scheduling decision.

ii. Weighting phase: The scheduler ranks each backend in the
candidates list (received from the filtering phase) based
on their available resources. Then, a backend with most
available resources will be selected as the final scheduling
decision.

Scheduling decisions can significantly impact the perfor-
mance of storage services as well as the whole services
provided in the cloud. This is because storage allocation will
affect the performance of both new volumes and existing
volumes. In addition, the internal operations of modern storage
clusters are often not exposed to the upper layers. This means
an optimized decision on storage allocation is not feasible
by using existing approaches. More intriguingly, even if state
of some of the operations, such as the garbage collector,
are provided to the higher layer, Cinder still cannot use
the information directly because there is another layer of
abstraction sitting between the scheduler and the backend
storage.

III. ARCHITECTURE OF THE BLOCK STORAGE
SELF-LEARNING SCHEDULER

In this section, we describe the challenges and architecture
of the proposed black-box scheduling scheme. The system
leverages machine learning such that we can make an intelli-
gent decision on which backend storage array to allocate the
volumes.

A. Performance Issues of Block Storage Schedulers

The QoS of a block storage node can be represented as
a value Qnode(q), where q denotes the expected level of
QoS in the set [1, 2, 3, 4]. The levels of QoS are defined in
Table I. In Equation 1, Vnode denotes the set that contains
allocated volumes, vRvio

denotes the number of SLO-IOPS
violations that happened on volume v, and vR denotes the
number of times that the available IOPS of v is sampled.
The proposed scheduler measures the available IOPS of each

TABLE I
ASSESSMENT POLICIES/DESIRED LEVEL OF QOS

Policy Description

#1

DefaultCinder

Accept the request by capacity only. This is the default
behavior of OpenStack Cinder.

#2

EfficiencyFirst

Accept the request if the allocation will not cause any
SLA violations with at least 80% of chances.

#3

QoSFirst

Accept the request if the allocation will not cause any
SLA violations with at least 90% of chances.

#4

StrictQoS

Accept the request if the allocation will not cause any
SLA violations with at least 99% of chances.

virtual volume within a configurable interval to approximately
identify the rate of SLO-IOPS violations and each backend
available IOPS. We name this process Resource Evaluation,
which is represented by R in the equation. Hence, the QoS of
a block storage backend node can be represented as:

Qnode(q) =

∑
v∈Vnode

vRvio

vR

|Vnode|
(1)

B. Design Objectives

The architecture of the scheduler is shown in Fig. 1.
The gray boxes represent the new modules that are added
to the OpenStack Cinder. The Self-learning core uses the
performance data collected from the backend nodes to train
appropriate classifiers (Section III-D) for each backend node.
In the event of receiving a create-volume request, the filtering
module eliminates the backends that do not meet the capacity
requirement, it then adds the remaining backends to a candi-
date set. Next, using the trained classifiers, the filtering module
will predict the potential impact of the request on the QoS of
each node in the candidate set.

TABLE II
CLASSIFICATION FEATURES

Field Description

clock Record timestamp

TotReqIOPS Total requested IOPS of live volumes

num Number of live volumes

vioGroup SLO-IOPS violation groups (defined in Table III)

The weighting module selects a backend node from the
set of candidates, with the least probability of causing SLA-
IOPS violations followed by the highest number of available
capacity. Thereupon, based on the Assessment Policy specified
by the user, the nodes that do not meet the SLO-IOPS
requirements are removed from the candidate set.

Table II describes the four features selected for the proposed
supervised learning. Feature vioGroup denotes the number of
SLO-IOPS violations (identified by the Resource Evaluation
process) as a categorical variable that is transformed via



Fig. 1. Architecture of the self-learning scheduler

variable discretization heuristics. The domain of vioGroup
is presented in Table III. Variable discretization decreases
the entropy of the learning models, and its correctness in
classification learning is presented by Irani [9].

TABLE III
SELF-LEARNER SCHEDULER CONFIGURATION PARAMETERS

Parameter Description

ResMClockGap Threshold of IOPS viloation evaluations.

ViolationGroups
Defines intervals to discretize the number of SLO.
i.e. G1: 0 to 5 violations; low violation rate.

MLAlgorithm Machine learning algorithms selected.

AssessmentPolicy Scheduling policy defined in Table I.

The learning objective is to model the pattern of SLO-IOPS
violations for each backend. Therefore, feature selection is
based on linking the behavior of recurring workloads to the
performance of the underlying block storage system. Table III
presents the self-learner configurations. Users can configure
the level of QoS based on their needs.

C. Self-Learning Core Algorithms

We leverage supervised machine learning algorithms to
schedule storage requests. There are two phases involved.
Phase 1 is to build the classification models, and Phase 2
is to make scheduling decisions using the classifiers built in
Phase 1. Users can also choose to rebuild the classifiers if the
performance results of Phase 2 are not satisfactory. This is
denoted as Feedback learning scheme in this paper. Otherwise
if the classifiers remain unchanged in Phase 2, we refer to it
as Two-Phase learning scheme.

1) Algorithm 1 - Training Phase: The training phase only
considers capacity for scheduling the create-volume requests
(same as Cinder default scheduler). We chose to do it so that

our scheduler can be applied in the OpenStack environment.
The goal of training phase is collecting the data required to
build the initial classifiers for each backend (line 11) while
treating them as a black-box. The classifiers are then used in
the decision phase to make accurate scheduling decisions. The
steps above are integrated with Cinder filtering and weighting
modules respectively.

Algorithm 1 Training Phase
//Pref denotes the user preferences

1: while training is not done do
2: clock ← clock + 1 // Each Clock is a second
3: if Request != ∅ //Checks for requests arrival then

//Best denotes the chosen backend by scheduler
4: Best← CinderF ilteringWeighting(Request)
5: Allocate(Best,Request)
6: if Pref.ResMClockGap > random.next() then

//sample training data from the guest VMs
7: Run ResourceEvaluation()
8: end while
9: Run BuildClassifiers(Backends)

2) Algorithm 2 - Decision Phase: After the initial training
phase the behavior of each backend is modeled. Thereby, the
proposed scheduler takes the requested IOPS into account.
Upon receiving a request, the scheduler initiates a candidate set
(line 4) and makes a decision in two steps. First, the filtering
phase matches the backends that has enough capacity (line
6). Then, the scheduler predicts the request potential impact
on each backend (line 7) and will only add the backends that
could satisfy the users’ preferred level of QoS (line 8) to the
candidate set. The second step is weighting of the selected
candidates and either allocate the request or reject it. The
scheduler selects a backend with maximum available capacity
and the least probability of increasing the SLO-IOPS violation
rate (line 12). Note, the classifiers return a vector (pred in line
7) that contains predictions in form of probability percentages
for each vioGroup (defined by user).

3) Feedback Learning Scheme: The goal of feedback learn-
ing is re-building the predictive models in case a backend does
not have good performance. User can enable feedback learning
by setting value of the AllowFeedback variable to true in the
configurations. The Check BadPerformance function (line
21 of algorithm 2) detects sudden changes in the level of QoS
for each backend by comparing recent changes in their Qnode

(Equation 1) within ranges of time. If the value of Qnode

has a high variance within few consecutive ranges of time,
then the scheduler will re-build the classifiers using the most
recent sampled data collected through the Resource Evaluation
process (line 19).

D. Potential Machine Learning Algorithms

We evaluated the C4.5 decision tree and Bayesian Network
(BayesNet) learning algorithms that had accuracies of 90%
and 92% respectively [10]. The accuracy is calculated using
the K-fold cross validation (with k = 10) [11]. We compared



Algorithm 2 Decision/Feedback Phase
//Pref denotes the user preferences

1: while true do
2: clock ← clock + 1
3: if Request != ∅ then //Checks for requests arrival
4: CandidateBackends = {}

/*Filtering phase*/
5: for each B in Available Backends do
6: if B.AvlCapacity > Request.Capacity then

//Classify the request
7: pred ← B.Classify(Request)

//Pref.AP denotes AssessmentPolicy
8: if Pref.AP.Satisfy(pred) then
9: CandidateBackends.Append(B)

10: end if
11: end for

/*Weighting phase*/
12: bk ← from CandidateBackends select

backend b such that:
1) b has max available capacity
2) Request has the least probability of

increasing SLA-IOPS violation rate on b
13: if bk != ∅ then
14: Allocate(bk,Request)
15: else
16: reject(Request)
17: end if
18: if Pref.ResMClockGap > random.next() then

//sample training data from the guest VMs
19: Run ResourceEvaluation()
20: if Pref.AllowFeedback == true then
21: BadPerformance = Check Performance()
22: if BadPerformance == true then
23: Run BuildClassifiers(Backends)
24: end while

the accuracy of C4.5 decision tree, Support Vector Machine
(SVM), BayesNet and Naı̈ve Bayes. However, we decided to
eliminate Naı̈ve Bayes and SVM with accuracy of 54% and
83% respectively. First, the linear boundary algorithms (SVM
and Naı̈ve Bayes) performed poorly, but the decision boundary
algorithms that are highly non-linear performed better (C4.5
and BayesNet). Second, their accuracies are relatively lower
than C4.5 and BayesNet. Also, We omitted the logistic re-
gression and K-nearest neighbor (KNN) algorithms because
the training data does not fit well in them. Moreover, KNN is
not lightweight.

IV. EXPERIMENTS

In this section, we analyze the performance of the pro-
posed self-learning scheduler, and Cinder scheduler in a self-
developed simulation environment of cloud storage systems.

A. Experiment Design

The experiment design was based on the storage deployment
proposed by Rackspace [12] with 6 storage backend nodes.
Each node contains 18 × 2TB 7.2K SAS hard drives config-
ured with RAID 0+1. Each node also has 6 GB RAM memory
and 1 core CPU. Each hard drive can achieve up to 190 IOPS
throughput.

The workloads are generated using block level I/O traces
and random distributions. Each create-volume request includes
Arrival-time, Capacity, SLO-IOPS, and Deletion-time. The
Arrival-time is induced from 50,000 sequential I/O write-
requests collected from real world Windows enterprise storage
servers [5]. Also, we normalized the Arrival-time from mil-
liseconds to seconds to have a concurrent batch of requests.
The requests Capacity and SLO-IOPS are randomly chosen
between [100GB, 500GB, 1000GB] and [200, 350, 450] re-
spectively using the Normal random distribution. The requests
Deletion-time is generated based on the Poisson distribution
with a mean value of 20 seconds. We chose the Poisson
distribution for simplicity. Based on our experiments, different
types of distributions would not affect the methodology of
our experiments. Since machine learning is based on finding
patterns in data, however, it is more challenging to discover
patterns in the maximum entropy probability distributions
(such as the Normal distribution). To illustrate, we ran 1000
simulations using workloads generated with Poisson and Nor-
mal distributions. Each experiment simulated 5,600 minutes
of I/O operations. The results are presented in Table IV, they
show that workloads generated using the Normal distribution
increase the average rate of SLO-IOPS violations compared to
the Poisson distribution. Thereby, the proposed scheduler can
control the rate of SLA-IOPS violations for workloads with
higher entropy distributions.

TABLE IV
COMPARISON OF RANDOM DISTRIBUTIONS FOR WORKLOAD

GENERATION

Random
Distribution

Bayes Net
Accuracy

C4.5
Accuracy

Average rate of
SLO-IOPS Violations

Poisson 90% 92% 6.5%

Normal 83.3% 84.3% 12%

The initial 9,000 requests are used as the training workload
to build 6 classifiers (one classifier for each backend). This
will avoid overfitting and guarantee that for each backend,
at least 800 Resource Evaluation records will be available
for training. The remaining 41,000 requests were used as the
validation workload to assess the performance of the proposed
scheduler. Lastly, in order to simulate the resource fluctuation,
the number of available IOPS of each backend was randomly
(50% chance) added or subtracted between 100 and 600 on
every 250 seconds of simulation. Lastly, each experiment
simulated 5,600 minutes of operations.



B. Tune Primary Parameters

Table V presents the simulator configurations used for our
experiments. For example, assume on a certain clock the
Resource Evaluation event identifies 3 SLA violations within
the volumes of a backend node. Then, the scheduler will assign
the V3 category as the VioGroup for the respective Resource
Evaluation record.

TABLE V
CONFIGURATION PARAMETERS FOR THE EXPERIMENT

Parameter Value Description

ResMClockGap 0.5
50% chance of running

Resource Evaluation

ViolationGroups
V1: (0); V2: (1 or 2)
V3: (3 or 4) V4: (5+)

violation classes
for the experiments

MLAlgorithm C4.5 Decision tree and Bayesian network

AssessmentPolicy CinderDefault, EfficiencyFirst, QoSFirst, StrictQoS

C. Simulation Results

We first simulated the training phase with the OpenStack
default scheduler and the training workload to collect initial
performance data and build the classification models. Next,
we assessed the proposed scheduler performance based on the
Two-Phase and Feedback learning schemes.

Fig. 2. Feedback learning scheme vs. Two-Phase learning scheme.

Feedback learning can mitigate unexpected workload
changes by dynamically updating the classification models
when sudden changes in SLA violation rates are detected
(Section III-C2). It increases the overall accuracy of the
learning models at the cost of adding computation overhead
to the storage scheduler. The comparison of Two-Phase and
Feedback learning schemes are presented in Figure 2. Results
showed that the Feedback learning scheme with Bayesian
network classifier significantly dropped the rates of SLO-IOPS
violations for the QoSFirst and EfficiencyFirst policies to 5%.
Also, the C4.5 decision tree performed better than Bayesian
network in the Two-Phase learning scheme. Overall, the rate

(a) Feedback learning scheme

(b) Two-Phase learning scheme

Fig. 3. Performance of the self-learning scheduler in controlling the rate of
SLO-IOPS violation within 1000 experiment per each combination of each
assessment policies and learning schemes.

of SLO-IOPS violations was regulated with the choice of
Assessment Polices, e.g. the StrictQoS policy achieved the
minimal violation rates. On the other hand, the rejection rate of
the create-volume requests was increased, thereby more back-
end nodes were required to schedule a higher number of the
requests. Figure 3 presents the performance of the self-learning
scheduler in controlling the rate of SLO-IOPS violations in
1000 experiments when combining the assessment policies and
the learning schemes.

Figure 4 presents the percentage of IOPS allocation for
each Assessment Policies using the Two-Phase and Feedback
learning schemes. White spaces below the 100% line refer to
the reserved resources to guarantee QoS, and the allocations
above the 100% line denote over-allocation of the available
IOPS to increase the resource utilization. The results showed
that the Cinder default scheduler over-allocates the IOPS
resources as it does not consider the QoS. Therefore, it has the
highest rates of SLO-IOPS violations (Figure 2). In contrast,
for each backend node, the proposed QoS-aware policies only
allocate a sufficient number of volumes to assure QoS for the
future create-volume requests.

The proposed scheduler met the certain levels of QoS
indicated by the user configurations and at the same time
maximized the resource utilization. Consequently, depending
on the task, the proposed scheduler determine and configure
backend block storage nodes to provide efficient scheduling
decisions.



Assessment Policy: StrictQoS QoSFirst EfficiencyFirst OpenStack Cinder Default Scheduler

(a) C4.5 Decision Tree

Assessment Policy: StrictQoS QoSFirst EfficiencyFirst OpenStack Cinder Default Scheduler

(b) Bayesian Network

Fig. 4. Percentage of resource allocation during the simulations for each Assessment Policy, evaluated within both Two-Phase and Feedback learning.

V. CONCLUSION

In this work, we introduced a self-learning scheduling
algorithm for cloud block storage systems. The proposed
system can be easily integrated to OpenStack deployments.
The scheduling decision assumes that the internal states of
the backend nodes are unknown, and by monitoring the per-
formance across multiple workloads, we were able to cluster
the performance and schedule the resources. We also defined
three assessment policies that can dictate how the violation
rates of SLO-IOPS should be controlled offering another layer
of Quality of Service to cloud tenants. We evaluated the per-
formance of the self-learning schedulers. The violation rates
of SLO-IOPS were well controlled within 85% of accuracy
for all three policies for most experiments. Particularly, the
rate of SLO-IOPS can be reduced to 2% when the StrictQoS
policy is selected. Overall, the proposed scheduler makes SLA-
aware scheduling decisions independent of the workload, the
internal states of the backend nodes, and the state of the cloud
(i.e. network traffic). Therefore, the scheduler can reduce the
cost of cloud storage infrastructure and increase the resource
utilization.

Our short term plan is to open source our code base
to the OpenStack community repositories as well as study
the effectiveness of our architecture in a larger hardware
deployment.
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