
1

Real-Time Digital Signatures
for Time-Critical Networks

Attila A. Yavuz Member, IEEE,, Anand Mudgerikar, Ankush Singla, Ioannis Papapanagiotou Senior
Member, IEEE, and Elisa Bertino Fellow, IEEE

Abstract—The secure and efficient operation of time-critical
networks, such as vehicular networks, smart-grid and other
smart-infrastructures, is of primary importance in today’s soci-
ety. It is crucial to minimize the impact of security mechanisms
over such networks so that the safe and reliable operations of
time-critical systems are not being interfered. For instance, if the
delay introduced by the crypto operations negatively affects the
time available for braking a car before a collision, the car may
not be able to safely stop in time. In particular, as a primary
authentication mechanism, existing digital signatures introduce
a significant computation and communication overhead, and
therefore are unable to fully meet the real-time processing
requirements of such time-critical networks.

In this paper, we introduce a new suite of real-time digital
signatures referred to as Structure-free and Compact Real-time
Authentication (SCRA), supported by hardware acceleration, to
provide delay-aware authentication in time-critical networks.
SCRA is a novel signature framework that can transform
any secure aggregate signature into a signer efficient signa-
ture. We instantiate SCRA framework with Condensed-RSA,
BGLS, and NTRU signatures. Our analytical and experimental
evaluation validates the significant performance advantages of
SCRA schemes over their base signatures and the state-of-the-art
schemes. Moreover, we push the performance of SCRA schemes
to the edge via highly optimized implementations on vehicular
capable System-on-Chip (SoC) as well as server-grade General
Purpose Graphics Processing Units (GPGPUs). We prove that
SCRA is secure (in random oracle model) and show that
SCRA can offer an ideal alternative for authentication in time-
critical applications.

Index Terms—Applied cryptography; digital signatures; real-
time authentication; hardware-acceleration.

I. INTRODUCTION

Technological advances in sensors and embedded systems
are making the deployment of “smart” infrastructures possible.

Attila A. Yavuz is with the School of Electrical Engineering and
Computer Science, Oregon State University, Corvallis, OR 97331.
E-mail: attila.yavuz@oregonstate.edu

A. Singla, Anand A. Mudgerikar and Elisa Bertino are with the Com-
puter Science Department, Purdue University, West Lafayette, IN, 47907.
E-mail: {amudgeri,asingla,bertino}@purdue.edu

I. Papapanagiotou is with Netflix Inc., Los Gatos, CA 95032 and Purdue
University, West Lafayette, IN, 47907.
E-mail: ipapapa@ncsu.edu

This work is done in part at Robert Bosch LLC Research and Technology
Center at North America (CR/RTC3-NA), Pittsburgh, PA by Attila A. Yavuz
during his employment at Bosch. This material is partially based upon work
supported by the Department of Energy under Award Number DE-OE0000780
and by the NSF CAREER Award CNS-1652389 at Oregon State University.
The work reported in this paper also has been partially supported by NSF
under awards CNS-1719369 and ACI-1547390 at Purdue University. The
authors also appreciate and gratefully acknowledge the donation of a Tesla
K40 GPU and the Tegra K1 System on Chip from the NVIDIA Corporation
used for the research described in this paper.

Such infrastructures will usher automation in a large number
of application domains such as transportation, manufacturing,
smart-grid and urban life (e.g. Smart-city).

Because of their control capabilities and pervasive data
acquisition, securing such smart-infrastructures is a critical
requirement. Even though many security techniques are avail-
able, their application to smart infrastructures is not straight-
forward, especially when such infrastructures are based on
networks that include mobile devices, and for safety reasons,
they have to meet real-time requirements. We refer to such
networks as time-critical networks.

An example is a vehicular network in which events from
vehicles, such as sudden brake of a vehicle, have to be
communicated promptly to the other vehicles in the network
so that they can timely react to the events. Scalability is also
crucial as many envisioned time-critical networks involve huge
numbers of devices and systems. A key security technique for
any comprehensive solution is represented by authentication
as it is critical for establishing trust and securing communica-
tions among parties in a network. Authentication techniques
have been widely investigated. However, to meet the real-
time and scalability requirements of large scale time-critical
networks, we need techniques that are far more efficient than
the currently available ones. It is critical that devices in such
a network should be able to respond and/or to initiate a large
number of authentications in a small time-frame.

To address such a requirement, in this paper we develop
a series of fast digital signatures, supported by hardware-
acceleration, to enable real-time authentication in time-critical
networks. We introduce a generic signature framework, re-
ferred to as Structure-free and Compact Real-time Authen-
tication (SCRA), that can be instantiated with any secure
aggregate signature. We then develop specific SCRA instanti-
ations from Condensed-RSA [30], BGLS [7], NTRU [27] and
PASSSign [18], and demonstrate that these SCRA schemes
are significantly more computationally efficient than their
counterparts in modern CPUs. We also computationally paral-
lelize SCRA across thousands lightweight threads commonly
supported by modern GPUs. We use several optimizations
and show that the performance can be higher compared to
the performance obtained when the CPU is used. Finally, we
apply similar optimizations to SoCs commonly used by car
manufacturers and IoT deployments.

A. State-of-the-Art Methods and Limitations
We outline the advantages and limitations of authentication

mechanisms that are most relevant to our work.

2

SCRA Key Generation: Before deployment (Offline)

Parameters/Format Pre-computed Table Γ

SCRA Signature Generation and Verification: Time-critical (Online)

Fetch

signatures

from table Γ

Offline Signature Generation

σ ← SCRA.Sig(m,sk)

$ *{0,1} , {0,1}r mκ← ∈

* [0,2 1], 1, ,b

iM i L∈ − = …

1 '

'L

m

m

⋮

⋮

1 '

'L

γ

γ

⋮

⋮

1. (', . ')LASig Agg γ γ…

(,)r sσ =
* *

1(, ,) (||)LM M H m r… ←
Given (, ,), verifym r sσ =

*' || || , 1,i im i M P i L= = …
' ' '

1{0,1} . (, , ,)LASig Ver m m s PK← …
Send (m,σ)

to the verifier

{0,1}← SCRA.Ver(m,σ,PK)

1,0 1,0 1,2 1 1,2 1

,0 ,0 ,2 1 ,2 1

(,) (,)

(,) (,)

(',), (',)

b b

b bL L L L

m m

m m

sk sk PK PK P

γ γ

γ γ

− −

− −

= Γ =

ɶ ɶ⋯⋯

⋮ ⋮

ɶ ɶ⋯⋯

,

, ,

(', ') . (1),

|| || , where is a pad

. (, ')

 1, , , 0, ,2 1

i j

i j i j

b

sk PK ASig Kg

m i j P P

ASigSig m sk

for i L j

κ

γ

←
=

←

= … = … −

ɶ

ɶ1, ,

[0, 2 1], 1, , .

L

b

i

M M

M i L∈ − = …

…

* *

1(, ,) (||)LM M H m r… ←

Range of H: bxL=d

Divide d into b-bit L sub-field

*' || ||i im i M P=

Figure 1: The main idea behind our preliminary construction.

Table I: The estimated execution time (in msec) of SCRA and its counterparts.

Delay
(msec)

ECDSA [3]
(pre-computed) RSA [35] BGLS [7] NTRU [27] SCRA-C -RSA SCRA-BGLS SCRA-NTRU

SCRA-
NTRUPASS

Signer 0.65 3.94 0.46 2.481 0.1639 0.0251 0.0048 0.00487
Verifier 0.82 0.02 34 0.493 0.0513 34.21 0.507 0.4937
End-End 1.47 3.96 34.46 2.974 0.2152 34.2351 0.5118 0.4986

The results are obtained on a computer with Intel i7-5930K CPU/Clock Speed 3.5Ghz and 16GB DDR4 2400 MT/s (PC4-19200) with Crypto Libraries MIRACL [38] for RSA
and ECDSA, PBC Library [24] for BGLS and NTRU-crypto Library [40] for NTRU, the cryptographic hash function is selected as SHA-256. The parameters for generic
SCRA are L = 32, b = 8. Given security parameter κ = 112, the private key sizes of ECDSA, RSA, BGLS and NTRU schemes are 32, 256, 61 and 769 bytes,
respectively [14], [40], [24]. Hence, the size of table Γ for SCRA-C -RSA, SCRA-BGLS and SCRA-NTRU are 2 MB, 160 KB and 12.33 MB, respectively. The size of
public key and signatures in SCRA schemes are identical to that of their base scheme, with the exception of extra κ = 112-bit randomness, which is negligible.

Message Authentication Codes and Standard Digital
Signatures: Symmetric crypto-based authentication mecha-
nisms rely on Message Authentication Code (MAC) [28].
Despite their computational efficiency, these methods are not
practical for broadcast authentication in large-scale distributed
systems, as they require pairwise key distribution among
all signers and verifiers. They also cannot achieve non-
repudiation and public verifiability. Digital signatures (e.g.,
RSA [35], ECDSA [3]) rely on the Public Key Infrastructures
(PKIs) [28], which makes them publicly verifiable and scalable
for large systems. Hence, they are considered as a primary
authentication mechanism for large-scale delay-aware systems.
For instance, the vehicular WAVE architecture mandates the
use of PKI mechanisms to sign critical messages [2]. Despite
their scalability, standard digital signature schemes require
several expensive operations such as modular exponentiation
and pairing (e.g., BLS [8]). Therefore, they are not suitable
for time-critical authentication. It has been shown that they
introduce significant delays, which are unacceptable in time-
critical networks such as vehicular networks [33].

Delayed Key Disclosure and Amortized Signatures:
Delayed key disclosure methods [32] are efficient as they
introduce an asymmetry between signer and verifier via a
time factor. However, these methods require packet buffering,
and therefore cannot achieve immediate verification (which is
vital for delay-aware authentication). Signature amortization
(e.g., [25]) computes a signature over a set of messages instead

of individual messages. Hence, the cost of signature generation
and verification is amortized over multiple messages. However,
these methods require packet buffering and introduce packet
loss risk due to the use of hash chains.

Specialized Signatures: One-Time Signatures
(OTSs) (e.g.,[34]) offer fast signature generation and
verification. However, they incur very large signature and
public key sizes, and also public keys must be renewed
frequently. Various customizations of traditional signatures
(along with cryptographic pairing [8]) and OTSs for time-
critical systems such as vehicular networks (e.g., [16]) and
smart-grids have been proposed. However, these schemes still
suffer from computational inefficiency (due to heavy use of
pairings) or public key distribution issues (OTSs).

The offline-online signatures (e.g., [31]) pre-compute a
token for each message to be signed at the offline-phase, and
then use it to compute a signature on a message very effi-
ciently at the online-phase. Despite their merits, offline-online
signatures incur significant storage overhead (i.e., linear with
respect to the number of messages to be signed). Moreover,
they require heavy computation for applications with high
message throughput, since the signer depletes pre-computed
tokens rapidly and is forced to regenerate them at the online-
phase. Hence, offline-online signatures are not suitable for
time-critical networks with high message throughput.

Our prior work Rapid Authentication (RA) [41] is an ef-
ficient offline-online signature, which leverages the already

3

available pre-defined message structures in certain applications
(e.g., smart-grid) to reduce the computational and storage
overhead of RSA-type offline-online constructions. Despite its
advantages, RA is only suitable for applications that have a pre-
defined message structure with a limited number of message
components. Moreover, RA requires pre-computed tokens (i.e.,
one-time masking signatures) to be stored/renewed per item as
in traditional offline-online techniques. Hardware-Accelerated
Authentication (HAA) [39] exploits hardware acceleration to
speed up RA in various settings. HAA demonstrates the ben-
efit of hardware acceleration to reduce the end-to-end delay
of digital signature schemes. In particular, HAA shows the
performance advantages offered by GPUs for offline-online
signatures to batch regenerate tokens as they are depleted.

B. Our Contribution

We develop a new suite of delay-aware signatures that
we refer to as Structure-Free and Compact Authentication
(SCRA) to enable fast authentication for time-critical net-
works.

Main Idea: SCRA is based on the observation that the
signature aggregation operation of some signature schemes is
several magnitudes of times faster than that of their signature
generation. We leverage this fact to shift the expensive opera-
tions of signature generation phase to the key generation phase.
That is, at the key generation (offline), we compute a set of
signatures on the bit-structures of a hash output domain. Later,
we can combine these pre-computed signatures very efficiently
based on the hash of each message without enforcing a
message format (e.g., unlike [41]) or storage/regeneration of a
token per-message (e.g., unlike offline-online signatures (e.g.,
RA [41], [9]) that incurs linear storage and re-computation
overhead). This simple but elegant strategy enables SCRA to
achieve very fast signature generation, a low end-to-end cryp-
tographic delay, small-constant signature sizes with a constant-
size private/public key. Figure 1 further outlines our main idea.

Properties: We outline below the relevant properties of our
schemes.
• Generic and Simple Design: SCRA can be

instantiated from any aggregate signature. We prove
that SCRA is EU -CMA-secure if its base scheme is
IA-EU -CMA secure (see Section II). We show that SCRA is
at least a magnitude times faster than standard signatures as
shown in Table I even without optimization.
• Highly Fast Signing, Low Delay and Compactness: We

develop several instantiations of SCRA offering performance
trade-offs with different computational overhead, signature and
key sizes.
- SCRA-C -RSA is constructed from C -RSA [30], which

transforms the highly costly exponentiation of RSA signing
into a few modular exponentiations, followed by already effi-
cient signature verification. Therefore, SCRA-C -RSA offers
the lowest end-to-end delay among all of its counterparts
(e.g., 7 and 18 times faster than ECDSA and RSA, respec-
tively) with a signature size of standard RSA. This makes
SCRA-C -RSA an ideal choice for time-critical applications
with a reasonable signature size.

- SCRA-BGLS is constructed from BGLS [7], which re-
duces the signing cost from an exponentiation to a few
modular multiplications. SCRA-BGLS offers the smallest
signature size among all counterparts with a minimal signer
overhead, making it suitable for resource-limited devices.

- SCRA-NTRU is based on the NTRU [27] signature
scheme. It is important to mention that we use the NTRU
scheme that is secure against transcript attacks [13]. Sig-
natures are aggregated using the lattice based aggregation
technique described in [15]. The lattice based sequential
aggregate signature is proven to be secure in the random
oracle security model [4]. Due to its moderate signature and
key sizes and low end-to-end delay, SCRA-NTRU is ideal
for time-critical applications.

- SCRA-NTRUPASS is based on the PASS [18] signature
scheme. It is also a lattice based cryptographic scheme based
on the partial Fourier recovery problem.
• Performance Enhancements via Hardware-Acceleration:

We improve the performance of SCRA by developing vari-
ous hardware-acceleration and software-optimizations, which
enable significant speed improvements (see Section VI).

II. DEFINITIONS AND MODELS

We first introduce our notation and definitions, followed
by our system and threat model. We then give our security
model, in which we clarify the security properties of the
SCRA schemes.

A. Notation and Definition

|S| denotes the cardinality of set S. {xi}li=0 denotes
(x0, . . . , xl). x $← S denotes that variable x is randomly and
uniformly selected from set S. ||, |x| and {0, 1}∗ denote the
concatenation operation, the bit length of variable x and the
set of binary strings of any finite length, respectively.

Definition 1 A signature scheme SGN is a tuple of three
algorithms (Kg ,Sig ,Ver) defined as follows:

- (sk ,PK)← SGN .Kg(1κ): Given the security parameter
1κ, the key generation algorithm returns a private/public
key pair (sk ,PK) as the output.

- s ← SGN .Sig(m, sk): The signing algorithm takes a
message m ∈ {0, 1}∗ and a private key sk as the input,
and returns a signature s as the output.

- {0, 1} ← SGN .Ver(m, s,PK): The verification algo-
rithm takes a message m ∈ {0, 1}∗, signature σ and
public key PK as the input. It returns a bit: 1 means
valid and 0 means invalid.

SCRA relies on aggregate signatures [7], which can ag-
gregate multiple signatures into a single compact signature.
SCRA uses a single-signer aggregate signature (e.g., [30],
[43]), which aggregates signatures computed under the same
private key.

Definition 2 A single-signer aggregate signature ASig is de-
fined as follows:

4

- (sk ,PK)← ASig .Kg(1κ): Given the security parameter
1κ, the key generation algorithm returns a private/public
key pair (sk ,PK) as the output.

- γi ← ASig .Sig(mi, sk): The signing algorithm takes a
message mi ∈ {0, 1}∗ and private key sk as the input. It
returns a signature γi computed under sk as the output.

- s ← ASig .Agg(γ1, . . . , γL, params): The aggregation
algorithm takes a set of signatures γ1, . . . , γL and op-
tionally some parameters params as the input. It returns a
single-compact signature s as the output. Optional params
may include sk (aggregation under private key) or PK
(public aggregation) depending on specific instantiations.
We will omit params for the sake of simplicity.

- {0, 1} ← ASig .Ver(−→m, s,PK): The verification algo-
rithm takes messages −→m = (m1, . . . ,mL), aggregate
signature s and PK as the input. It returns a bit: 1 means
valid and 0 means invalid.

B. System and Threat Model

Our system model follows the traditional PKC-based broad-
cast authentication model (e.g., [41]), in which a signer
computes a digital signature on a message and broadcasts a
message-signature pair to the verifiers. This model is com-
patible with our target time-critical applications. For instance,
in vehicular networks, a vehicle or road infrastructure broad-
casts authenticated messages to the surrounding entities as
described in vehicular communication standards [2]. Our threat
model reflects how a standard digital signature-based broadcast
authentication works. That is, an adversary A can observe
message-signature pairs computed under a private key. A also
can actively intercept, modify, inject and replay messages
transmitted over the network. A aims at producing existential
forgeries against the digital signatures computed by signers.

C. Security Model

The security notion for a signature is Existential Unforge-
ability under Chosen Message Attacks (EU -CMA).

Definition 3 The EU -CMA experiment for SGN is as fol-
lows:

- Setup. Algorithm B runs (sk ,PK)← SGN .Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any message mj of her
choice for j = 1, . . . , qs. B replies to each query with a
signature sj ← SGN .Sig(mj , sk).

- Forgery. A outputs a forgery (m∗, s∗) and wins the
EU -CMA experiment, if SGN .Ver(PK ,m∗, s∗) = 1
and m∗ was not queried to B .

SGN is (t, qs, ε)-EU -CMA secure, if no A in time t making
at most qs queries has an advantage with probability ε.

SCRA is constructed from a single-signer aggregate signature
that achieves the signature immutability (described in detail
below). The basic security notion for aggregate signatures is
Aggregate-EU-CMA (A-EU -CMA) [20], [7], which captures
the homomorphic properties of aggregate signatures. Later,

the security of aggregate signatures has evolved to capture
improved security properties such as signature immutability.
Intuitively, signature immutability refers to the difficulty of
computing new valid aggregated signatures from a set of
other aggregated signatures [29]. To describe Immutable-A-
EUCMA (IA-EU -CMA) [26], [43] security, we first define
the aggregate signature extraction argument as below.

Aggregate Signature Extraction: The L-aggregate signature
extraction problem, referred as AE problem, means that
for a given aggregate signature s ← ASig .Agg(γ1, . . . , γL)
computed on L individual data items, it is difficult to extract
the individual signatures (γ1, . . . , γL) provided that only s is
known to the extractor. Moreover, it is difficult to extract any
aggregate signature subset s′ from a given aggregate signature
s [42]i. The AE problem was first introduced by Boneh et
al. in [7] for the security of BGLS signatures, but as an
intractability assumption without a proof. Coron et al. in [10]
later showed that Boneh’s AE problem for BGLS scheme is
equivalent to the Computational Diffie Hellman Assumption
(CDH) [21]. Yavuz et al. in [43] analyzed the log truncation
problem for forward-secure and aggregate signatures [26], and
produced formal proofs with AE argument for only the DLP-
based schemes [43]. A related problem in the context of one-
way accumulators for RSA have been considered in [6], which
extends to other aggregate RSA variants (e.g., C -RSA [29]).

Definition 4 The AE experiment for a ASig is as fol-
lows [42]:

- Setup. Algorithm B runs (sk ,PK)← ASig .Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any batch message comprised
of L individual messages −→mj = (mj,1, . . . ,mj,L) of her
choice for j = 1, . . . , qs. B replies to each query j with
an aggregate signature sj ← ASig .Agg(γj,1, . . . , γj,L),
where {γj,i ← ASig .Sig(mj,i, sk)}Li=1.

- Aggregate Extraction. A outputs (−→m∗, σ′), where −→m∗ =
(m∗1, . . . ,m

∗
k), 1 ≤ k ≤ L and wins the AE experiment,

if
1. ASig .Ver({m∗i }i∈{1,...,k}, σ′,PK) = 1,
2. −→m∗ is a subset of previously queried or some combi-

nation of previously queried batch messages: ∃I ′ ⊆
{1, . . . , qs} : −→m∗ ⊆ ||k∈I′−→mk. This implies that
−→m∗ itself as a batch query never has been queried
directly to B (but individual data items in −→m∗ have
been queried as an element of different batch queries
before, but not individually),

3. The extraction is non-trivial: If −→m∗ is combined with
any previously queried or a combination of previously
queried batch messages, the combination is not equal
to one of the previously queried batch message itself:
∀I ⊆ {1, . . . , qs} : [−→m∗||(||j∈I−→mj)] 6= {−→ml}qsl=1.

ASig is (t, qs, ε)-AE secure, if no A in time t making at
most qs queries has an advantage with probability ε.

We now provide the definition of Immutable-A-EUCMA
(IA-EU -CMA) security [26], [43] as below:

5

Definition 5 The IA-EU -CMA experiment for a ASig is as
follows [42]:

- Setup. Algorithm B runs (sk ,PK)← ASig .Kg(1κ) and
provides PK to the adversary A .

- Queries. A queries B on any batch message comprised
of L individual messages −→mj = (mj,1, . . . ,mj,L) of her
choice for j = 1, . . . , qs. B replies to each query j with
an aggregate signature sj ← ASig .Agg(γj,1, . . . , γj,L),
where {γj,i ← ASig .Sig(mj,i, sk)}Li=1.

- Forgery. A outputs a forgery (−→m∗, γ∗) and wins the
experiment IA-EU -CMA, if

1. The forgery is valid as ASig .Ver(−→m∗ , γ∗,PK) = 1,
2. −→m∗ is a subset of previously queried or some com-

bination of previously queried batch messages: ∃I ′ ⊆
{1, . . . , qs} : −→m∗ ⊆ ||k∈I′−→mk,

3. Batch query −→m∗ has not been queried previously as
−→m∗ 6⊆ {−→mj}qsj=1. This implies one of the two con-
ditions: (i) At least one item m∗′ ⊆ −→m∗ has never
been queried to B , or (ii) the AE experiment wining
conditions 2-3 hold as described in Definition 4.

ASig is (t, qs, ε)-IA-EU -CMA-secure, if no A in time t
making at most qs queries has an advantage at least with
probability ε.

III. PROPOSED SCHEMES

In this section, we present our proposed schemes. We
first describe the SCRAdigital signature framework. We then
provide several instantiations of the generic SCRA, each
offering a unique performance benefit compared to the others.

A. Structure-free and Compact Real-time Authentication

SCRA can transform any aggregate signature into a signer-
efficient signature scheme, whose signing operation is as
fast as just the aggregation (i.e., simple modular addition
or multiplication) of a small set of pre-computed signatures.
SCRA has several advantages over the state-of-the-art sig-
natures: (i) SCRA is a magnitude(s) of times more efficient
with respect to signature generation than standard signatures
(e.g., RSA [35], ECDSA [3], BGLS [7]). (ii) Unlike message-
formatted signature schemes [41], SCRA does not require
any pre-defined message formats. (iii) Unlike offline-online
signatures [37], [31], [41], SCRA does not require linear-
sized token storage. (iv) SCRA offers compact signature and
public key sizes, and therefore is more scalable than one-time
signatures (e.g., [34]).

The detailed description of SCRA is given in Algorithm 1.
We further elaborate as follows:

Let (sk ′,PK ′) ← ASig .Kg(1κ) be a ASig key pair and
H : {0, 1}∗ → {0, 1}d be an ideal hash function (i.e., H
behaves as a Random Oracle (RO) [4]), where d-bit denotes
the output length of the cryptographic hash function.

1) Key Generation (Offline): We apply a divide-and-conquer
strategy over the hash output H : {0, 1}∗ → {0, 1}d.
That is, a d-bit hash output can be interpreted as integers
(j1, . . . , jL), where each ji is a b-bit integer such that b ·L =
d. We then compute a signature on each b-bit integer j

with its corresponding index i as m̃i,j ← i||j||P , γi,j ←
ASig .Sig(m̃i,j , sk

′), i = 1, . . . , L, j = 0, . . . , 2b−1, where P
is a random padding. The index (i, j) will enable the signer to
select the corresponding pre-computed signature from the table
Γ in the online phase for a given message, and therefore ensure
the correctness of the scheme. Moreover, the index i enforces
the order of the bit chunks in the online phase. The random
padding P is added to ensure that, for practical applications,
the input of hash function remains larger than d as required.

We construct a pre-computed sub-message/signature table
Γ = {m̃i,j , γi,j}L,2

b−1
i=1,j=0, which supports very efficient signa-

ture generation. Γ is constant-size (e.g., unlike [31], [9]) and
imposes no structure/length constraints on the online messages
to be signed (e.g., unlike [41]).

2) Signature Generation: Given m ∈ {0, 1}∗, the signer
computes (M∗1 , . . . ,M

∗
L) ← H(m||r), and fetches the cor-

responding signatures γ′i of i||M∗i ||P from Γ, where r
$←

{0, 1}κ, i = 1, . . . , L. The rest is to combine signatures
efficiently as s← ASig .Agg(γ′1, . . . , γ

′
L), where σ ← (r, s).

3) Signature Verification: The verifier computes
(M∗1 , . . . ,M

∗
L) ← H(m||r) and verifies σ as

{0, 1} ← ASig .Ver(〈1||M∗1 ||P, . . . , L||M∗L||P 〉, s,PK ′).

B. Instantiations of SCRA

An ideal aggregate signature to instantiate SCRA must
achieve very efficient signature aggregation and
IA-EU -CMA security. We identified three signatures to
instantiate SCRA: Condensed-RSA (C -RSA) [30] based
on RSA [35], BGLS [7] based on pairing and aggregate-
NTRU signatures [36], [15] based on NTRU [13]. We
summarize important operations of our SCRA instantiations
in Algorithms 2-5. For the sake of brevity, we only give the
dominant signature operations that are performed in each
algorithm. The rest of the SCRA operations are as described
in Algorithm 1 and are not repeated. Moreover, we only
give the private/public keys of each instantiation without
describing key generation steps and parameters in detail.
We refer interested readers to C -RSA [30], BGLS [7] and
NTRU [36], [15] for the details.

SCRA-C -RSA is based on Condensed-RSA (C -RSA) [30]
and therefore it obtains the highest computational effi-
ciency benefit from SCRA among all instantiations. That is,
C -RSA is by default a verifier efficient signature scheme but
its signature generation is expensive (i.e., an exponentiation
under a large modulo). Since the SCRA significantly reduces
the signing cost, SCRA-C -RSA achieves the lowest end-to-
end delay among all instantiations with a moderate signature
size (e.g., 2KB RSA signature size). SCRA-C -RSA is de-
scribed in Algorithm 2.

SCRA-BGLS is based the BGLS signatures [7], and there-
fore has the smallest signature/key size among all instantia-
tions (e.g., 320 bits). The SCRA strategy also significantly
increases the signature efficiency of BGLS. However, since
BGLS has an expensive signature verification due to crypto-
graphic pairing operations, SCRA-BGLS has a larger end-to-
end cryptographic delay compared to our other instantiations.
SCRA-BGLS is described in Algorithm 3.

6

Algorithm 1 Structure-free Compact Real-Time Authentication (SCRA) Scheme

(sk ,PK)← SCRA.Kg(1κ): Executed offline (once).

1: (sk ′,PK ′)← ASig .Kg(1κ), P $← {0, 1}d.
2: Select integers (b, L) such that b · L = d.
3: m̃i,j ← i||j||P , γi,j ← ASig .Sig(m̃i,j , sk

′), i = 1, . . . , L, j = 0, . . . , 2b − 1.
4: sk ← (sk ′,Γ) and PK ← (PK ′, P), where Γ← (m̃i,j , γi,j) for i = 1, . . . , L, j = 0, . . . , 2b − 1.

σ ← SCRA.Sig(m, sk): Given a message m ∈ {0, 1}∗, compute its signature as follows:
1: (M∗1 , . . . ,M

∗
L)← H(m||r), where r ← {0, 1}κ and M∗i ∈ [0, 2b − 1], i = 1, . . . , L.

2: m′i ← i||M∗i ||P , and fetch corresponding signature γ′i of m′i from table Γ, i = 1, . . . , L.
3: s← ASig .Agg(γ′1, . . . , γ

′
L) and σ = (r, s).

{0, 1} ← SCRA.Ver(m,σ,PK): Given m ∈ {0, 1}∗, verify its signature σ under PK as follows:
1: (M∗1 , . . . ,M

∗
L)← H(m||r),

2: m′i ← i||M∗i ||P , i = 1, . . . , L,
3: {0, 1} ← ASig .Ver(〈m′1, . . . ,m′L〉, s,PK ′).

Algorithm 2 SCRA instantiation with Condensed-RSA [30]: SCRA-C -RSA

(sk ,PK)← SCRA-C -RSA.Kg(1κ): Given 1κ, generate C -RSA and SCRA-C -RSA parameters as follows:
1: Randomly generate two large primes (p, q) and computes n = p · q. The public and secret exponents (e, d) ∈ Z∗n satisfies
e · d ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1). Set sk ′ ← (n, d) and PK ′ ← (n, e). Let H ′ be a full domain hash
function (e.g.,[5]) defined as H ′ : {0, 1}∗ → Zn.

2: Compute γi,j ← H ′(m̃i,j)
d mod n, i = 1, . . . L, j = 0, . . . , 2b − 1, set (Γ, sk ,PK) as in Algorithm 1.

σ ← SCRA-C -RSA.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ′i of m′i from Γ, i = 1, . . . , L.
Compute s←

∏L
i=1(γi) mod n. Set σ as in Algorithm 1 SCRA.Sig Step 3.

{0, 1} ← SCRA-C -RSA.Ver(m,σ,PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if se =

∏L
i=1H

′(m′i) mod n, return 1, else return 0.

Algorithm 3 SCRA instantiation with BGLS [7]: SCRA-BGLS

(sk ,PK)← SCRA-BGLS .Kg(1κ): G1 and G2 are two (multiplicative) cyclic groups of prime order p. g1 and g2 are
generators of G1 and G2, respectively. GT is an additional group such that |G1| = |G2| = |GT |. ê is a bilinear pairing
ê : G1×G2 → GT such that (i) Bilinear: for all u ∈ G1, v ∈ G2, ê(ua, vb) = ê(u, v)a·b. (ii) Non-degenerate: ê(g1, g2) 6= 1
(please refer to [7] for details). Finally, H ′ : {0, 1}∗ → G1 is a Full Domain Hash [19] modeled as RO [4].

1: Set sk ′ = x and PK ′ = gx2 ∈ G2 [7], where x $← Zp.
2: Compute γi,j ← H ′(m̃i,j)

x ∈ G1, i = 1, . . . L, j = 0, . . . , 2b − 1, set (Γ, sk ,PK) as in Algorithm 1.

1: σ ← SCRA-BGLS .Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ′i of m′i from Γ, i = 1, . . . , L.
Compute s←

∏L
i=1(γi) ∈ G1. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-BGLS .Ver(m,σ,PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if ê(s, g2) =

∏L
i=1 ê(H

′(m′i), g
x
2 ∈ G2), return 1, else return 0.

Note: We implement SCRA-BGLS on an elliptic curve E , in which modular exponentiation and multiplication correspond
point scalar multiplication and point addition on E [17], respectively.

SCRA-NTRU is based on NTRU aggregate signature [15].
Note that SCRA-NTRU achieves the highest signing ef-
ficiency among all instantiations (it is even more efficient
than SCRA-C -RSA at the signer side). It also has a low
end-to-end delay, which is comparable to SCRA-C -RSA but
slightly less efficient, since NTRU aggregate signature ver-

ification algorithm in [15] is less efficient than that of
SCRA-NTRU and a low end-to-end delay but with a
larger signature size. SCRA-NTRUPASS is based on the
PASS [18] signature scheme. It provides similar performance
to SCRA-NTRU in terms of both latency and storage but the
lattice based scheme is more practical to use. This means that

7

Algorithm 4 SCRA instantiation with lattice-based sequential aggregate signatures [15]: SCRA-NTRU

(sk ,PK)← SCRA-NTRU .Kg(1κ): We use lattice-based sequential aggregate signature schemes AggSign and AggVerify
as described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are functions as described
in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function NTRUSign [27], where PK ′ ← A = g/f ∈ RqX ,

sk ′ ← T =

[
f g
F G

]
, T is the trapdoor and Bn is the domain of fA. ωi represents the list of i partial aggregate signatures.

2: Compute γi,j ← NTRUSign(sk,H(m̃i,j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (Γ, sk ,PK) as in Algorithm 1.

1: σ ← SCRA-NTRU .Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ′i of m′i from Γ, i = 1, . . . , L.
Compute s← AggSign(T, γi, ωi−1) for i = 1, . . . , L. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRU .Ver(m,ω,PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature
verification), if AggVerify(A,m, s, {ωi}Li), return 1, else return 0.

Algorithm 5 SCRA instantiation with lattice-based sequential aggregate signatures [15]: SCRA-NTRUPASS

(sk ,PK)← SCRA-NTRUPASS .Kg(1κ): We again use lattice-based sequential aggregate signature schemes AggSign
and AggVerify as described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are
functions as described in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function PASSSign [18], where sk ′ is a polynomial L∞

norm equal to 1(coefficients are chosen independently from the set [−1, 0, 1]), PK ′ ← A = FΩ · sk ′ , T is the trapdoor
and Bn is the domain of fA. ωi represents the list of i partial aggregate signatures.

2: Compute γi,j ← PASSSign(sk,H(m̃i,j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (Γ, sk ,PK) as in Algorithm 1.

1: σ ← SCRA-NTRUPASS .Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ′i of m′i from Γ, i = 1, . . . , L.
Compute s← AggSign(T, γi, ωi−1) for i = 1, . . . , L. Set ω as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRUPASS .Ver(m,σ,PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate
signature verification), if AggVerify(A,m, s, {

∑
i}Li), return 1, else return 0.

SCRA-NTRUPASS is secure for usage even with smaller pa-
rameters as it is based on the partial Fourier recovery problem
rather than the approximate CVP problem for SCRA-NTRU .

IV. SECURITY ANALYSIS

We now present our security analysis for SCRA schemes.

Theorem 1 SCRA is (t, qs, ε)-EU -CMA secure, if the un-
derlying ASig is (t′, qs, ε)-IA-EU -CMA secure, where t′ =
O(t) + (ASGN +RO(.)) · qs. RO(.) and ASGN denote
the cost of random oracle invocation and aggregate signature
generation, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU -CMA secure
SCRA. We construct a simulator F , which breaks
(t′, qs, ε)-IA-EU -CMA secure ASig by using A as a
subroutine with the experiment below:

Setup: F is provided with two oracles as below:

1. A random oracle h ← RO(m), which returns h
$←

{0, 1}d if m ∈ {0, 1}∗ has not been queried before, else
it returns the same answer h for the given m. That is, the
cryptographic hash function H in SCRA is modeled as
a random oracle.

2. A signature oracle s← Osk ′(−→m) as in IA-EU -CMA ex-
periment (i.e., Definition 5). That is, given a query
−→m = (m1, . . . ,mL), O returns an aggregate signature
as s ← ASig .Agg(γ1, . . . , γL), where (sk ′,PK ′) ←
ASig .Kg(1κ) and {γi ← ASig .Sig(mi, sk

′)}Li=1.

3. F gives PK ← (PK ′, P) to A , where P $← {0, 1}d as
in Algorithm 1 SCRA.Kg Step 4.

Queries: A queries F on mj ∈ {0, 1}∗ for j = 1, . . . , qs.
For each query j, F performs the following operations:

1. F queries RO(.) on (mj ||rj), and receives an answer as
(m̃j,1, . . . , m̃j,L) ← RO(mj ||rj), where rj

$← {0, 1}κ
such that {|m̃j,i| = b}Li=1 and b ·L = d (as in Algorithm
1 SCRA.Kg Steps 2-3 and SCRA.Sig Step 1).

2. F queries sj ← Osk ′(
−→
M j), where

−→
M j = 1||m̃j,1||P, . . . ,

L||m̃j,L||P . F sends σj = (sj , rj) to A (as in Algorithm
1 SCRA.Kg Step 3 and SCRA.Sig Steps 2-3).

Forgery: A outputs a forgery (m∗, σ∗ = 〈s∗, r∗〉) and
wins the EU - CMA experiment, if (i) SCRA.Ver(m∗, σ∗,
PK) = 1 and (ii) m∗ /∈ {m1, . . . ,mqs}. If A loses
in the EU -CMA experiment, then B also loses in the
IA-EU -CMA experiment and aborts. Otherwise, F returns
a ASig forgery as (

−→
M∗, s∗), where

−→
M∗ = (1||m̃∗1||P, . . . ,

L||m̃∗L||P) such that (m̃∗1, . . . , m̃
∗
L) ← RO(m∗||r∗) (as in

Query phase Step 1). F check the forgery conditions for

8

IA-EU -CMA experiments as in Definiton 5 as follows:
1) Validity: Given that SCRA.Ver(m∗, σ∗,PK) = 1 holds,

ASig .Ver(
−→
M∗, s∗,PK ′) = 1 also holds. Therefore,

ASig forgery is valid.

2) Non-triviality: F checks if
−→
M∗ 6⊆ {

−→
M1, . . . ,

−→
Mqs} holds.

This implies of the conditions below:

a) At least one data item (j||m̃∗j ||P) ∈
−→
M∗ has never

been queried to O (i.e., the forgery condition 3.i in
Definition 5). Hence, the IA-EU -CMA-secure ASig is
broken.

b) The signature extraction occurs by Definition 4 condi-
tion 2-3 as ∃I ′ ⊆ {1, . . . , qs} :

−→
M∗ ⊆ ||k∈I′

−→
Mk (i.e.,

the forgery condition 3.ii in Definition 5). This implies
that
−→
M∗ as a batch query has never been queried to O.

At the same time, each data item {j||m̃∗1||P}Lj ∈
−→
M∗

has been queried as a part of a batch query k ∈ I ′
−→
Mk,

and s∗ is the aggregation of their corresponding indi-
vidual signatures (i.e., individual signatures have been
extracted and combined as in Definition 4). Finally,
the signature extraction is non-trivial since

−→
M∗ is

comprised of L data items and therefore it cannot be a
trivial combination of previously asked batch queries.
Hence, the IA-EU -CMA-secure ASig is broken.

If the above conditions hold, F wins in the
IA-EU -CMA experiment against ASig . Otherwise, F aborts.
The probability that F wins in the IA-EU -CMA experiment
is identical to that of A winning in the EU -CMA experiment.
Note that H is modeled as a random oracle, and therefore
the probability that H is not target collision-resilient or
subset-resilient [34] is a negligible probability in terms of κ
(i.e., 1/2d/2). For each query of A , F performs a query to
RO(.) and another query to O. Hence, the execution time of
F is that of A plus (ASGN + RO(.)) · qs. �

We now prove that the SCRA-C -RSA and
SCRA-BGLS schemes are secure in Theorem 2 and
Theorem 3, respectively. Remark that, for the sake of brevity,
we refer to the generic proof in Theorem 1 for common
steps, and only emphasize the scheme-specific steps in these
theorems.

Theorem 2 SCRA-C -RSA is (t, qs, ε)-EU -CMA secure, if
the underlying C -RSA is (t′, qs, ε)-IA-EU -CMA secure,
where t′ = O(t) + [RO(.) + L · (Expn + Muln + H ′)] · qs.
RO(.), H ′, Expn and Muln denote the cost of random
oracle invocation, hash function H ′, modular exponentiation
and multiplication under modulo n, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU -CMA secure
SCRA. We construct a simulator F , which breaks
(t′, qs, ε)-IA-EU -CMA secure C -RSA by using A as a
subroutine as follows:

Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup
Phase. By Algorithm 2, (sk ′ = 〈n, d〉,PK ′ = 〈n, e〉) and
hash function used by O is H ′ : {0, 1}∗ → Zn that behaves as
a RO. F gives PK ← (PK ′, P) to A , where P $← {0, 1}d

as in Algorithm 2.

Queries: A queries F on mj ∈ {0, 1}∗ for
j = 1, . . . , qs. For each query j, F queries O on
(1||m̃j,1||P, . . . , L||m̃j,L||P) ← RO(mj ||rj) as in Theorem
1 Query Phase and gets sj ←

∏L
i=1 H

′(i||m̃j,i||P)d mod n
as in Algorithm 2. F returns σj = (sj , rj).

Forgery: A outputs a forgery (m∗, σ∗ = 〈s∗, r∗〉) and checks
the EU - CMA experiment winning conditions (i)-(ii) as in
Theorem 1 Forgery Phase. If they hold, then F returns a
C -RSA forgery for IA-EU -CMA experiment as (

−→
M∗, s∗) as

in Theorem 1 Forgery Phase and proceeds as follows:
1) Validity: SCRA.Ver(m∗, σ∗,PK) = 1 implies

(s∗)e =
∏L
i=1H

′(i||m̃∗i ||P) mod n holds. Therefore,
C -RSA forgery is valid.

2) Non-triviality: F checks if one these conditions hold:
i) At least one data item (j||m̃∗j ||P) ∈

−→
M∗ has never

been queried toO. This implies that IA-EU -CMA-secure
C -RSA is broken, since by the validity condition, there
is a signature as s′ = H ′(j||m̃∗j ||P)d mod n, which was
not obtained from O. ii) The signature extraction occurs
as defined in Theorem 1 Non-triviality condition (b).
That is, individual signatures {s∗j = H ′(j||m̃∗j ||P)d mod
n}Lj=1 have never been individually queried to O, but
all were part of a batch query k ∈ I ′

−→
Mk. This implies

IA-EU -CMA-secure C -RSA is broken by the signature
extraction argument as in [30], [42]) (see Section II-C).
The non-triviality holds as in Theorem 1.

The success probability is as in Theorem 1 and the proba-
bility that H ′ produces a collision is 1/2|n|/2. For each query
of A , F performs a query to RO(.) and O, which requires a
H ′ computation, followed by an exponentiation/multiplication
under n for each item in (1||m̃j,1||P, . . . , L||m̃j,L||P). Hence,
the execution time of F is that ofA plus [RO(.)+L·(Expn+
Muln+H ′)] · qs. �

Theorem 3 SCRA-BGLS is (t, qs, ε)-EU -CMA secure, if
the underlying BGLS is (t′, qs, ε)-IA-EU -CMA secure,
where t′ = O(t) + [RO(.) + L · (Exp + Mul + H ′)] · qs.
RO(.), H ′, Exp and Mul denote the cost of random oracle
invocation, hash function H ′, modular exponentiation and
multiplication in G1, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU -CMA secure
SCRA. We construct a simulator F , which breaks
(t′, q′s, ε

′)-IA-EU -CMA secure BGLS by using A as a
subroutine with the experiment below:

Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup
Phase. By Algorithm 3, (sk ′ = x,PK ′ = gx2 ∈ G2) and
H ′ : {0, 1}∗ → G1 is a RO. F gives PK ← (PK ′, P) to
A as in Algorithm 3.

Queries: A queries F on mj ∈ {0, 1}∗ for
j = 1, . . . , qs. For each query j, F queries O on
(1||m̃j,1||P, . . . , L||m̃j,L||P) ← RO(mj ||rj) as in Theorem

9

1 Query Phase and gets sj ←
∏L
i=1 H

′(m̃i,j)
x ∈ G1 as in

Algorithm 3. F returns σj = (sj , rj).

Forgery: A outputs a forgery (m∗, σ∗ = 〈s∗, r∗〉) and
checks EU - CMA experiment winning conditions (i)-(ii) as
in Theorem 1 Forgery Phase. If they hold then F returns a
BGLS forgery for IA-EU -CMA experiment as (

−→
M∗, s∗) as

in Theorem 1 Forgery Phase and proceed as follows:
1) Validity: SCRA.Ver(m∗, σ∗,PK) = 1 implies that that

ê(s∗, g2) =
∏L
i=1 ê(H

′(i||m̃∗i ||P), gx2 ∈ G2) holds.
Therefore, BGLS forgery is valid.

2) Non-triviality: F checks if one of these conditions
hold. (i) At least one data item (j||m̃∗j ||P) ∈

−→
M∗ has

never been queried to O. That is, IA-EU -CMA-secure
BGLS is broken, since by validity condition, there is
a signature as ê(s′, g2) = ê(H ′(j||m̃∗j ||P), gx2 ∈ G2),
which was not obtained from O. (ii) The signature
extraction occurs as defined in Theorem 1 Non-triviality
condition (b). That is, individual signatures ê(s∗j , g2) =
ê(H ′(j||m̃∗j ||P), gx2 ∈ G2), j = 1, . . . , L have never
been individually queried to O, but all were part of
a batch query k ∈ I ′

−→
Mk. This implies IA-EU -CMA-

secure BGLS is broken by the signature extraction ar-
gument as in [10] (see Section II-C). The non-triviality
of signature extraction holds as in Theorem 1.

The success probability analysis is as in Theorem 1 and the
probability that H ′ produces a collision is 1/2|G1|/2. For each
query of A , F performs a query to RO(.) and an another
query to O, which requires a H ′ computation, followed by
an exponentiation and multiplication in G1 for each item in
(1||m̃j,1||P, . . . , L||m̃j,L||P). Hence, the execution time of
F is that of A plus t′ = O(t) + [RO(.) + L · (Expn +
Muln+H ′)] · qs. �

Remark 1 The formal proof of SCRA-NTRU and
SCRA-NTRUPASS follow a similar logic and therefore
will not be repeated here. At the same time, we note
that despite the existence of an A-EU -CMA analysis,
IA-EU -CMA proof and analysis for signature extraction
argument are not currently available for NTRU signatures.
Hence, a full formal reduction requires this gap to be filled
first, which is out of the scope of this paper.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we present the performance results of our
experiments. We first compare the results of the SCRA with
the state-of-the-art algorithms on a modern powerful CPU.
We then provide results for the GPU implementations of
SCRA-C -RSA and SCRA-NTRU as compared to their CPU
counterparts. For the GPU, we used an Nvidia Tesla K40c
card, which is comprised of 2880 computing cores with
12GB of GDDR5 device memory and 288GB/sec memory
bandwidth. Our base system is equipped with an Intel Core
i7-6700K 4.0GHz Quad-Core Processor and 16GB DDR4
2400 MT/s. This infrastructure represents a datacenter setting.
We also implemented SCRA on a System-on-Chip (SoC).
We used an Nvidia Tegra K1 SoC, which has a 4-Plus-1

quad-core ARM Cortex A15 CPU with clock rate of 2.3
Ghz and an embedded GPU with 192 computing cores. Such
SoCs represent smaller scale systems that are widely used in
IoT deployments. We open sourced the source code for the
research and academic community to use and evaluate1.

We summarize the results in Table I. Table I also provides
the implementation details, parameters and key/table sizes.
Table I shows the clear superiority of SCRA in terms of
signature generation efficiency and end-to-end cryptographic
delay (i.e., the sum of signature generation and verification
times) using a powerful CPU. That is, the signature generation
of SCRA instantiations are 24, 18 and 516 times faster than
their non-SCRA counterparts for RSA, BGLS, and NTRU,
respectively. This indicates that SCRA is an ideal choice
for a very high-throughput signature generation, especially
for resource-limited devices in IoT deployments. Similarly,
SCRA-C -RSA and SCRA-NTRU offer 18 and 7 times
lower end-to-end crypto delay compared to RSA and NTRU,
respectively, making them ideal choices for time-critical au-
thentication.

In addition to their computational efficiency, the
SCRA schemes are also compact, since the signature and
public key sizes remain the same with their base signature
scheme (the transmission of |r| = κ is negligible). By
comparing to each other, SCRA-C -RSA achieves the lowest
end-to-end delay with a moderate signature size (e.g., 256
bytes), while SCRA-BGLS offers the smallest signature (20
bytes) but the highest end-to-end delay. SCRA-NTRU has
the lowest signing delay (0.0018 msec), low end-to-end delay
but with large signatures (e.g., 1587 bytes). Note that all
SCRA schemes require storing a pre-computed table Γ, which
introduces a constant-size extra storage overhead at the signer
side e.g., 160 KB, 2 MB and 12.33 MB for SCRA-BGLS ,
SCRA-C -RSA and SCRA-NTRU respectively. This signer
storage is plausible even for some embedded devices (e.g.,
Raspberry PI 2 [1]), and negligible for vehicular networks.
Moreover, recall that, unlike offline-online signatures, the
signer overhead of SCRA is constant and it does not require
to regenerate tokens.

The offline stages of the algorithms take fairly minimal
times of 2.45, 8.65 and 12.83 seconds for SCRA-BGLS ,
SCRA-C -RSA and SCRA-NTRU , respectively. The offline
stage will only be required to execute once during the system
deployment.
Space versus execution time: We have a trade-off between
the space taken to store the signatures and the execution time
of the signing and the verification stages. As described in 1, an
d-bit hash output can be interpreted as integers (j1, . . . , jL),
where each ji is a b-bit integer such that b · L = d. The total
number of signatures that need to be calculated and stored in
the offline stage of an algorithm is thus L·2b. The total storage
cost is thus L ·2b ·S where S is the size of one signature. This
also implies that the number of aggregations to be performed
during the online phase increases linearly with L. Table II
provides for the SHA-256 hashing scheme various values of
(L, b) parameters and corresponding size of the signature table

1https://github.com/ipapapa/HWAcccelarated-Crypto

10

Figure 2: SCRA-RSA: Time to sign a message on a server.

Γ for each SCRA instantiation.

L (# bit chunks) b (# of bits SCRA− SCRA− SCRA−
(# of aggregations) # in a chuck) RSA BGLS NTRU

(KB) (MB) (MB)
16 16 20480 256 1578
32 8 160 2 12.32
64 4 20 0.25 1.54
128 2 10 0.125 0.77
256 1 10 0.125 0.77

Table II: The storage space of signature table and the number
of aggregations required for various L and b values.

One may observe that the smallest storage overhead can
be attained with (L = 256, b = 1), wherein we store a
signature for every bit in the hash output domain. However,
this requires L = 256 signature aggregations in the online sig-
nature generation phase (e.g., 256 modular multiplications for
SCRA-C -RSA), which may not be computationally efficient.
Another end of the trade-off is (L = 16, b = 16), wherein
only L = 16 online aggregations are required during the
online phase. However, this requires substantially larger table
sizes, which may be suitable for some real-life applications.
We observed that (L = 32, b = 8) offers a highly favorable
overall performance/storage performance, as shown in Table
I and Table II. The size of the pre-computed tables for
SCRA-BGLS , SCRA-C -RSA and SCRA-NTRU is 160 KB,
2 MB and 12.33 MB, respectively, for signature-sizes of
20, 256 and 1578 bytes, respectively. This will require 32
signatures to be aggregated in the online-signing phase of each
SCRA scheme.

VI. HARDWARE-ACCELERATION OF SCRA

To accelerate SCRA, we leveraged the parallel processing
and optimization capabilities of GPUs both on server and em-
bedded in the SoCs. We have introduced several optimizations
to parallelize the individual steps of SCRA algorithms. We
used optimizations specific to the architecture of the GPU to
harness the vast amount of available lightweight cores [11].

A. Accelerating SCRA-C-RSA with GPUs

- SCRA RSA - Server: In the offline signature stage, for
8192 messages, we achieve x1.3 times more throughput

Figure 3: SCRA-RSA: Time to verify a message on a server.

Figure 4: SCRA-RSA: Time to sign a message on SoC.

Figure 5: SCRA-RSA: Time to verify a message on SoC.

with our GPU optimizations compared to the CPU only
implementations. In the online signature stage, we achieve
significantly high throughput gains, which can reach up to
x5.3 times. In the verify stage, the gain is around x4.2 times.
These results are reported in Figures 2 and 3. In terms of
execution time, the GPU can process a message in 0.367,
0.022, 0.031 milliseconds for the offline, online and verify
stages of the algorithm, respectively. This is approximately
x1.31, x5, x4 times faster than the corresponding CPU
execution times. The GPU gives a worse performance than
the CPU if a very small number of messages are processed.
This is mainly due to the low clock speeds of the GPU cores
as compared to the CPU and also due to the time to copy
the data from the CPU memory to the GPU memory and
vice-versa. Our experiments show that the online signature

11

and signature verification stages are executed faster in the
GPU than in the CPU for message batches greater than 128
and 256, respectively.

- SCRA RSA - SoC: In the offline signature stage, for 8192
messages, we achieve x3.2 times higher throughput with our
GPU optimizations compared to CPU only implementations.
In the online signature stage, we achieve high throughput
gains up to x5.2 times. In the verify stage, the gain is around
x4.8 times. These results are reported in Figures 4 and 5.
Below we describe the techniques we adopted to achieve

some of the performance speedups shown by above experi-
ments.
Chinese Remainder Theorem (CRT): We leverage CRT [28]
to accelerate SCRA on GPUs. We split a k-bit signature σ into
two k/2 bit signatures σ1 and σ2. σ1 = Md mod p−1 mod
p, σ2 = Md mod q−1 mod q, where M is the message
and (p, q) are the primes used. Then, we use the mixed
radix conversion algorithm [22] to combine the two parts and
recover the signature σ as σ = σ2 +[(σ1−σ2).(q−1 mod p)].q
These two parts are processed on separate threads in the
GPU, which is significantly faster than the k-bit modular
exponentiation.
Montgomery multiplication: The modular multiplication is
inefficient in the GPUs since it requires a trial division to
determine the result and is not parallelizable. The Montgomery
multiplication is suitable for implementation in a GPU, since
it does not require a trial division and can be implemented
in parallel on separate words of the message. That is, given
a · b mod n, we first find two integers r−1 and n′ using the
Extended Euclidean Algorithm such that rr−1−nn′ = 1. We
then transform a = ar mod n and b = br mod n. Later, we
compute a · b mod n by using Montgomery reduction [28].
Batch processing: The crypto operations for multiple mes-
sages are performed concurrently in the GPU. This requires
that a batch of messages be passed to the GPU, instead of a
single message.
Breakup of components into words: To optimize the
throughput on the GPU, each message component is divided
into words of size 32/64 bits, depending on the GPU capa-
bilities. Each operation being run on a single thread is run
over words rather than over entire message components. We
use standard multi-precision algorithms [12] to represent and
perform operations between large integers.
GPU warp size utilization: Warps are set of threads (gen-
erally 32) that are considered as one single execution unit
inside a CUDA block. To gain maximum throughput from the
GPU, it is necessary to attain the maximum number of active
warps per streaming multiprocessor which is 64 in our case.
We achieve this by adjusting the number of threads per block
to the optimal value.
Memory latency vs GPU occupancy: The size of the shared
memory can limit the number of active warps on the GPU
at a particular point in time by reducing the occupancy of
the Streaming Multiprocessors (SM). The other limiting factor
in the performance output is the number of reads and writes
on the global memory on the device. We identified a balance
between the SM occupancy and the global memory read/write
latency by testing various permutations of memory allocations

Figure 6: SCRA-NTRU: Time to sign a message.

Figure 7: SCRA-NTRU: Time to verify a message.

Figure 8: SCRA-NTRU: Time to sign a message.

among the shared and global memory.
Constant Length Non-zero Window Technique: We scan
the bits of the exponent from the least significant bit to
the most significant bit. At each step, we compute a zero
window or a non-zero window [23]. With the binary square-
and-multiply method, we can process these windows and
reduce the number of modular multiplications, making the
exponentiation algorithm faster.

B. Accelerating SCRA-NTRU with GPUs

- SCRA NTRU - Server: In the online signature stage, for 4096
messages, we achieve x0.79 times more throughput with our
GPU optimizations compared to CPU only implementations.
In the verify signature stage and offline stage, we achieve

12

Figure 9: SCRA-NTRU: Time to verify a message.

high throughput gains up to x6.5 and x30 times respectively.
These results are reported in Figures 6 and 7, respectively.
The cryptographic operations for multiple messages are
performed concurrently on the GPU. This requires that a
batch of messages be passed to the GPU, instead of a
single message for the signing and verification stage. We do
not employ the GPU for the online stage of SCRA-NTRU
because the signature aggregation technique is computation-
ally expensive and deploying it on a GPU core provides
little performance benefit. Due to these reasons, the CPU
performs better than the GPU during the online stage of the
protocol.

- SCRA NTRU - SoC: In the online signature stage, for 1024
messages, we achieve x0.81 times more throughput with our
GPU optimizations compared to CPU only implementations.
In the verify sign stage and offline stage, we achieve high
throughput gains upto x6.65 and x17.7 times respectively.
These results are reported in Figures 8 and 9 respectively.
We summarize below the optimizations that have resulted

in the performance gains shown by the previous experiments.
Batch Processing: Message components are processed in
batches as in Section VI-A. As mentioned before, we do not
use the GPU for the online stage of SCRA-NTRU.
Convolution Operations: The convolution operations in the
NTRU in the signing and verification phase are accelerated
by employing GPUs. The convolution operation between two
n bit polynomials is divided into n cores for each operation
where each core is responsible for calculating one bit of the
resulting polynomial.
Fourier Transformations: Implementing the Fourier transfor-
mation on GPUs further accelerates the signing, verification
and offline stages. Due to the use of faster convolution and
Fourier transformation operations on GPUs, the verify stage
of the protocol on GPUs is significantly faster than on CPUs.

VII. CONCLUSION

In this paper, we developed a new series of delay-aware
digital signatures for time-critical applications, which we
refer to as Structure-Free Compact Authentication (SCRA).
SCRA can transform any secure aggregate signature into
a signer efficient signature via a novel constant-size pre-
computation strategy. We proposed several instantiations of
SCRA schemes based on Condensed-RSA, BGLS, and NTRU

signatures, each offering a unique computation time, key and
signature size trade-offs. Our implementations and perfor-
mance comparison with the existing alternatives show that the
SCRA schemes achieve significantly faster signature gener-
ation and lower end-to-end delay. We also formally proved
that SCRA schemes are secure (in ROM). Finally, we pushed
the performance of SCRA schemes to their edge by fully
implementing them on server-grade GPUs and SoCs, which
indicated significant performance gains. All these properties
make the SCRA schemes a suitable alternative for delay-aware
authentication for time-critical applications.

REFERENCES

[1] Raspberry pi 2 specs. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/.

[2] IEEE guide for wireless access in vehicular environments (WAVE) -
architecture. IEEE Std 1609.0-2013, pages 1–78, March 2014.

[3] American Bankers Association. ANSI X9.62-1998: Public Key Cryptog-
raphy for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), 1999.

[4] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and Communications Security (CCS ’93), pages
62–73, NY, USA, 1993. ACM.

[5] M. Bellare and P. Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Proceedings of the 15th International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’96), pages 399–416. Springer-Verlag, 1996.

[6] J. Benaloh and M. de Mare. One-way accumulators: A decentralized
alternative to digital signatures. In Workshop on the Theory and
Application of Cryptographic Techniques on Advances in Cryptology,
EUROCRYPT ’93, pages 274–285, Secaucus, NJ, USA, 1994. Springer-
Verlag New York, Inc.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Proc. of the
22th International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT ’03), pages 416–432. Springer-
Verlag, 2003.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 14(4):297–319, 2004.

[9] D. Catalano, M. D. Raimondo, D. Fiore, and R. Gennaro. Off-line/on-
line signatures: Theoretical aspects and experimental results. Public Key
Cryptography (PKC), pages 101–120. Springer-Verlag, 2008.

[10] J. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction
assumption is equivalent to the diffie-hellman assumption. In Proceed-
ings of the 9th International Conference on the Theory and Application
of Cryptology (ASIACRYPT 03’), pages 392–397, 2003.

[11] K. Diao, I. Papapanagiotou, and T. J. Hacker. HARENS: Hardware
accelerated redundancy elimination in network systems. In IEEE
International Conference on Cloud Computing Technology and Science
(CLOUDCOM), Dec 2016.

[12] E. K. Donald. The art of computer programming. Sorting and searching,
3:426–458, 1999.

[13] L. Ducas and P. Q. Nguyen. Learning a zonotope and more: Cryptanal-
ysis of NTRUSign countermeasures. In Advances in Cryptology âĂŞ
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,
pages 433–450. Springer Berlin Heidelberg, 2012.

[14] I. ECRYPT. Yearly report on algorithms and keysizes (2012). d. spa.
20 rev. 1.0. Technical report, ICT-2007-216676 ECRYPT II, 2012.

[15] R. El Bansarkhani and J. Buchmann. Towards lattice based aggregate
signatures. Progress in Cryptology, AFRICACRYPT 2014, volume
8469 of Lecture Notes in Computer Science, pages 336–355. Springer
International Publishing, 2014.

[16] X. Fan and G. Gong. Accelerating signature-based broadcast authenti-
cation for wireless sensor networks. Ad Hoc Networks, 10(4):723–736,
June 2012.

[17] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2004.

[18] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte.
Practical signatures from the partial fourier recovery problem. In In-
ternational Conference on Applied Cryptography and Network Security,
pages 476–493. Springer, 2014.

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

13

[19] C. Jean-Sébastien. On the exact security of full domain hash. In
Advances in Crpytology (CRYPTO ’00), pages 229–235. Springer-
Verlag, 2000.

[20] R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic
signature schemes. In CT-RSA, pages 244–262, 2002.

[21] A. Joux and K. Nguyen. Separating decision diffie-hellman from compu-
tational diffie-hellman in cryptographic groups. Journal of Cryptology,
16(4):239–247, 2003.

[22] C. K. Koc. High-speed rsa implementation. Technical report, Technical
Report, RSA Laboratories, 1994.

[23] C. K. Koç. Analysis of sliding window techniques for exponentiation.
Computers & Mathematics with Applications, 30(10):17–24, 1995.

[24] B. Lynn. The pairing-based cryptography (pbc) library, 2010.
[25] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos. Multicast authen-

tication in fully adversarial networks. In IEEE Symposium on Security
and Privacy, pages 241 –253, May 2004.

[26] D. Ma and G. Tsudik. A new approach to secure logging. ACM
Transaction on Storage (TOS), 5(1):1–21, 2009.

[27] C. Melchor, X. Boyen, J.-C. Deneuville, and P. Gaborit. Sealing the
leak on classical ntru signatures. In M. Mosca, editor, Post-Quantum
Cryptography, volume 8772 of Lecture Notes in Computer Science,
pages 1–21. Springer International Publishing, 2014.

[28] A. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996. ISBN: 0-8493-8523-7.

[29] E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets:
Immutability for aggregated/condensed signatures. In Proceedings of the
9th European Symposium on Research in Computer Security (ESORICS
’04), pages 160–176. Springer-Verlag, September 2004.

[30] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-
a-service model. In Proceedings of the 20th IFIP WG 11.3 working
conference on Data and Applications Security, DBSEC’06, pages 89–
103. Springer-Verlag, 2006.

[31] D. Naccache, D. M’Raïhi, S. Vaudenay, and D. Raphaeli. Can D.S.A.
be improved? Complexity trade-offs with the digital signature standard.
In Proceedings of the 13th International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT ’94), pages 77–
85, 1994.

[32] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication
and signing of multicast streams over lossy channels. In Proceedings of
the IEEE Symposium on Security and Privacy, May 2000.

[33] J. Petit and Z. Mammeri. Authentication and consensus overhead in
vehicular ad hoc networks. Telecommunication Systems, 52(4):2699–
2712, 2013.

[34] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In Proceedings of the 7th Australian
Conference on Information Security and Privacy (ACIPS ’02), pages
144–153. Springer-Verlag, 2002.

[35] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[36] M. RÂĺuckert. Lattice-based signature schemes with additional features.
Ph.D. Thesis, 2010. TU Darmstadt.

[37] A. Shamir and Y. Tauman. Improved online/offline signature schemes.
In Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’01, pages 355–367, London, UK,
2001. Springer-Verlag.

[38] Shamus. Multiprecision integer and rational arithmetic c/c++ library
(MIRACL). http://www.certivox.com/miracl/miracl-download/, 2014.
[Online; accessed September 2014].

[39] A. Singla, A. A. Mudgerikar, I. Papapanagiotou, and A. A. Yavuz.
HAA: Hardware-accelerated authentication for internet of things in
mission critical vehicular networks. In IEEE International Conference
for Military Communications, 2015 (MILCOM ’15)., pages 1–7, October
2015.

[40] W. Whyte, M. Etzel, and P. Jenney. Open source ntru public key cryptog-
raphy algorithm and reference code, 2013. Available under the Gnu Pub-
lic License (GPL) a t https://github. com/NTRUOpenSourceProject/ntru-
crypto.

[41] A. A. Yavuz. An efficient real-time broadcast authentication scheme
for command and control messages. IEEE Transactions on Information
Forensics and Security, 9(10):1733–1742, Oct 2014.

[42] A. A. Yavuz. Immutable authentication and integrity schemes for
outsourced databases. Dependable and Secure Computing, IEEE Trans-
actions on, February 2016.

[43] A. A. Yavuz, P. Ning, and M. K. Reiter. BAF and FI-BAF: Efficient and
publicly verifiable cryptographic schemes for secure logging in resource-

constrained systems. ACM Transaction on Information System Security,
15(2), 2012.

Attila Altay Yavuz is an Assistant Professor in
the School of Electrical Engineering and Computer
Science, Oregon State University (August 2014). He
was a member of the security and privacy research
group at the Robert Bosch Research and Technology
Center North America (2011-2014). He received his
PhD degree in Computer Science from North Car-
olina State University in August 2011. He received
his MS degree in Computer Science from Bogazici
University (2006) in Istanbul, Turkey. He is broadly
interested in design, analysis and application of cryp-

tographic tools and protocols to enhance the security of computer networks
and systems. Attila Altay Yavuz is a recipient of NSF CAREER Award (2017).
His research on privacy enhancing technologies (searchable encryption) and
intra-vehicular network security are in the process of technology transfer with
potential world-wide deployments. He has authored more than 40 research
articles in top conferences and journals along with several patents. He is a
member of IEEE and ACM.

Anand Mudgerikar is currently pursuing his Ph.D.
degree with major in Information Security at the
Computer Science Department in Purdue University,
West Lafayette, IN, USA. He received his bachelor
degree in information and communication technol-
ogy from DA-IICT, India and his master degree
in information security from CERIAS, Purdue Uni-
versity. His current research interests include cryp-
tography, intrusion detection systems and network
security.

PLACE
PHOTO
HERE

Ankush Singla is a PhD student in the Computer
Science department at Purdue University special-
izing in Information Security and Assurance. He
has worked on projects ranging from "Hardware
Accelerated Authentication" and "Centralized Light-
ing management for Energy Saving". His current
research interests include Blockchain usage for IoT
authentication and Certificateless cryptography.

Ioannis Papapanagiotou holds a dual major Ph.D.
degree in Computer Engineering and Operations
Research from NC State University. He is currently
an architect at Netflix, a research assistant professor
at the University of New Mexico, and a graduate
faculty at Purdue University. Ioannis has served in
the faculty ranks of Purdue University (tenure-track)
and NC State University. Between 2010-2013, he
was working for IBM’s CTO office. He has been
awarded the NetApp faculty fellowship and estab-
lished an Nvidia CUDA Research Center at Purdue

University. Ioannis has also received the IBM Ph.D. Fellowship, Academy
of Athens Ph.D. Fellowship for his Ph.D. research, and best paper awards in
several IEEE conferences for his academic contributions. Ioannis has authored
approximately 40 research articles and 10 patent disclosures. Ioannis has also
served as a TPC chair in a number of IEEE conferences. Ioannis is a senior
member of IEEE and ACM.

Elisa Bertino is professor of computer science at
Purdue University, and serves as Director of the
CyberSpace Security Lab (Cyber2SLab). Prior to
joining Purdue in 2004, she was a professor and
department head at the Department of Computer
Science and Communication of the University of
Milan. She has been a visiting researcher at the IBM
Research Laboratory (now Almaden) in San Jose, at
the Microelectronics and Computer Technology Cor-
poration, at Rutgers University, at Telcordia Tech-
nologies. Her recent research focuses on database

security, digital identity management, policy systems, and security for web
services. She is a Fellow of ACM, of IEEE, and AAAS. She received the IEEE
Computer Society 2002 Technical Achievement Award, the IEEE Computer
Society 2005 Kanai Award, and the ACM SIGSAC Outstanding Contributions
Award. She is currently serving as EiC of IEEE Transactions on Dependable
and Secure Computing.

http://www.certivox.com/miracl/miracl-download/

	Introduction
	State-of-the-Art Methods and Limitations
	Our Contribution

	Definitions and Models
	Notation and Definition
	System and Threat Model
	Security Model

	Proposed Schemes
	Structure-free and Compact Real-time Authentication
	Instantiations of SCRA

	Security Analysis
	Performance Analysis and Comparison
	Hardware-Acceleration of SCRA
	Accelerating SCRA-C-RSA with GPUs
	Accelerating SCRA-NTRU with GPUs

	Conclusion
	References
	Biographies
	Attila Altay Yavuz
	Anand Mudgerikar
	Ankush Singla
	Ioannis Papapanagiotou
	Elisa Bertino

