
NDBench: Benchmarking Microservices at Scale
(submitted to HPTS 2017)

Ioannis Papapanagiotou
Netflix

Vinay Chella
Netflix

Netflix runs thousands of microservices and thousands of backend data store nodes on Amazon’s Web
Services (AWS) instances to serve and store data for almost 100M users. Hence, we are not always aware of
the traffic that bundled microservices may generate on our backend systems. Understanding the performance
implications of new microservices on our backend systems was also a difficult task. We needed a framework
that could assist us in determining the behavior of our scalable and highly available persistent storage systems
under various workloads, maintenance operations, and capacity constraints. We also wanted to be mindful
of provisioning our clusters, scaling them either horizontally (by adding nodes) or vertically (by upgrading
the instance types), and operating under different workloads and conditions, such as node failures, network
partitions, etc.

As new NoSQL data store systems appear in the market or pluggable database engines - Log-Structured-
Merge-Database (LSM) design, B-Tree, Bw-Tree, HB+-Trie etc. - they tend to report performance numbers
for the sweet spot, and are usually based on optimized hardware and benchmark configurations. Being a
cloud-native enterprise, we want to make sure that our systems can provide high availability under multiple
failure scenarios, and that we are utilizing our resources optimally. There are many other factors that affect
the performance of a database deployed on the Cloud, such as the instance types, workload patterns, and
types of deployments such as island vs global, number of replicas etc. There were also some additional
requirements; for example, as we upgrade our data store systems (such as Apache Cassandra upgrades) we
wanted to test the systems prior to deploying them in production.

For systems that we develop in-house, such as Dynomite, we wanted to automate the functional test
pipelines, understand the performance of Dynomite under various conditions, and under different storage
engines, e.g. Redis, RocksDB, LMDB, ForestDB, etc. Hence, we wanted a workload generator that could
be integrated into our pipelines for validating production-ready AMIs. Finally, we wanted a tool that would
resemble our production deployment. In the world of microservices, a lot of business process automation is
driven by orchestrating across services. Traditionally, some of the benchmarks were performed in an ad-hoc
manner using a combination of APIs, making direct REST calls in each microservice, or using tools that
directly send traffic to the data stores. However, most benchmark tools are not integrated as microservices
and do not have out of the box cluster management capabilities and deployment strategies.

Hence, we architected and developed NDBench. Netflix Data Benchmark (NDBench) is a pluggable
cloud-enabled benchmarking tool that can be used across any data store system. NDBench aids in simulat-
ing the performance benchmark by mimicking several production use cases. NDBench allows for dynamically
changing the benchmark configurations while a test is running, hence perform tests along our production mi-
croservices. NDBench is well integrated with common platform cloud services such as dynamic configuration
management, discovery services, and metrics. NDBench allows us to run infinite horizon tests to identify
potential memory leaks from long running processes or garbage collection issues, or to test long running
maintenance jobs such as database repairs or reconciliation. NDBench provides pluggable patterns, load
configuration, and interfaces for supporting different client APIs. NDBench includes a state-of-the-art UI
for deploying, managing and monitoring multiple instances from a single entry point reducing the overhead
of the person doing the benchmarks. We also incorporated NDBench into the Netflix Open Source (OSS)
ecosystem by integrating it with components such as Archaius for configuration, Spectator for metrics, and
Eureka for discovery service, and Spinnaker for global continuous delivery. However, we designed NDBench
so that these libraries are injected, allowing the tool to be ported to other cloud environments, or run locally.
In this talk, we are going to cover the technology, the use cases and showcase a demo of NDBench. We have
recently open sourced the framework.

1



Short bio of corresponding author

Ioannis Papapanagiotou is an experienced engineer and researcher having served different positions in the
industry and academia. He holds a dual Ph.D. degree in Computer Engineering and Operations Research
from NC State University. He is currently a senior distributed systems architect at Netflix, a research
assistant professor at the University of New Mexico, and a graduate faculty at Purdue University. He
focuses on distributed systems, cloud computing, internet of things, and network systems.

Ioannis has served in the faculty ranks of Purdue University (tenure-track), NC State University and the
University of New Mexico. He has been awarded the NetApp faculty fellowship and established an Nvidia
CUDA Research Center at Purdue University. Ioannis has also received the IBM Ph.D. Fellowship, Academy
of Athens Ph.D. Fellowship for his Ph.D. research, and best paper awards in several IEEE conferences for his
academic contributions. Ioannis has authored approximately 40 research articles and 10 patent disclosures.
Ioannis is a member of ACM and senior member of IEEE.

2


