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Abstract—The need of smarter and more interaction-friendly
indoor spaces compels the combination of Internet of Things
architectures with Cloud Computing approaches to produce
efficient and realizable infrastructure deployments. In this work,
we discuss a Cloud-assisted infrastructure model for monitoring
user motion in smart buildings with reference to a real-subject
realization trial. We focus on the model architecture and discuss
the applicability of the generated data on Cloud-based potential
application scenarios.

I. INTRODUCTION

Advanced technologies, such as Internet-of-Things (IoT)
enable creative ways of enhancing productivity and life quality
inside facilities. The limits are pushed beyond managing
temperature, door-locks and general security, to go as far
as reducing energy costs, detecting and building knowledge
based on human patterns and improving the occupant-building
interaction.

One of the key features such intelligent facilities should
possess is the ability to efficiently track occupants’ mobility,
either in order to take real-time actions or use the data to
calculate long-time patterns. This type of services are realised
either by attempting to estimate the user’s 2D coordinates
in a given space, which is referred to as micro-location
[1], [2], or by attempting to accurately place the user in
the vicinity of certain anchor points, known as proximity
sensing [3]. Especially, for indoor spaces, while a number
of RF-based technologies has been proposed over the years,
the unpredictability of signal propagation due to the variable
physical indoor environment, makes it still an ongoing research
topic [2].

Alternative methods that utilize data from body-mounted
Inertial Measurement Units (IMUs) have yielded accurate
results concerning microlocation [4], [5]. However, the cost
of mass distribution to individuals along with the lack of a
central processing and decision making node (such as a Cloud
federation), prohibit their use in well-attented everyday-use
environments, making them more appealing to first responder
localization applications [6]. Sub-meter accuracy, scalable and
low-cost installation, as well as low energy demands are
important factors for large scale indoor localization services.

In this paper, we discuss a Cloud-assisted infrastructure
model for location-aware smart facilities as featured in Fig. 1.

Smart Facility Cloud

Building 
State 

Analytics

User
Transition
Tracking

Edge Devices
(Computing

Infrastructure)

: Moving User : Periodic Transmission

Fig. 1. Location-aware intelligent building model

The model is based on proximity-sensing and a moving
transmitter-fixed scanner architecture that enables collection
of user-centric data. We also provide a proof of concept-
reference to our real-subject trial of this model [7] along
with an occupant mobility tracking approach that leverages
the collected data.

This work is organized as follows: Section II discusses
related work. Section III presents the model architecture.
Our proof of concept deployment and trial are presented in
Section IV, while Section V discusses the basic user movement
tracking method. Finally, Section VI highlights the Cloud
involvement and Section VII concludes this paper.

II. RELATED WORK

Localization services based on proximity detection have
been developed around a variety of architectures. Similar
to our approach, Martella et al. in [8] describe a sensing
infrastructure comprising of moving users equipped with
transmitters, predefined broadcasting anchors and a backbone
system of sniffers. Their approach is based on face-to-face
and mobile-to-mobile proximity sensing representing moving
users as proximity graphs [9]. Other approaches deploy less
elaborate methods that utilize already installed infrastructure
with the first option in such cases being the use of WiFi
equipment along with smartphone deployment [10]. However,
such solutions suffer from low-accuracy in distance calcula-
tions due to complex signal propagation as a WiFi beacon can
be detected occasionally from buildings away.
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Fig. 2. System architecture

In response to the this issue, proximity sensing approaches
are increasingly utilising the Bluetooth Low Energy (BLE)
technology for their services. The dominant approach in that
case is utilizing BLE-beacons [11] as static short-range trans-
mitters that mark certain areas [3], [12]–[14]. Such topology
requires users equipped with scanning devices (usually smart-
phones) that gather the broadcast packets and use the Received
Signal Strength Indicator (RSSI) values to place the user to the
proximity of the anchored area. Also, these beacons are passive
wireless devices without Internet connectivity or processing
power, and the proximity calculations are carried out either in
the user’s scanning device [13], or in most recent approaches
directly to Cloud-based environments [3], [12].

III. MODEL ARCHITECTURE

Although, the aforementioned architectures can yield sig-
nificant results in terms of accuracy, they heavily rely on the
assumptions that users are equipped with smartphones and
possess the appropriate application. Our schematic model as
depicted in Fig. 1 avoids this assumption by supplying the
occupants with small-factor low-consumption devices that pe-
riodically broadcast user-centric data. On the receiving end of
these transmissions, we place dedicated edge devices installed
throughout the facility. These scanning devices partition, either
by themselves of by forming clusters, the monitored smart
space into discrete cells.

At the next level of this IoT-inspired architecture, the edge
devices are connected to the facility’s networking infrastruc-
ture and continuously forward the received user data to a
federated Cloud level that allows centralized, but scalable
coordination. That way Cloud resources can be leveraged to
run proximity algorithms and provide cell to cell occupant
movement detection utilizing the central supervision of the
smart space. This tiered architecture will reduce the response
times to the central processing Cloud deployment, resulting in
a system better suited for real-time monitoring applications.
Finally, the edge devices will be able to cache a significant
amount of recent data before reporting to the Cloud. This
capability will enhance the accuracy of the proximity estima-
tions by utilizing all the latest measurements and will prevent
data losses in the case of a temporary disconnection from the
Cloud.

IV. DEPLOYMENT & PROOF OF CONCEPT TRIAL

In order to provide a proof of concept of the proposed
infrastructure, a simpler version was realized at three floors
of NC State University’s ECE Department as discussed in
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Fig. 3. Edge device and cell locations

[7]. The deployment used 30 Raspberry Pi modules as edge
devices and Gimbal BLE iBeacons Series 10 to equip the
moving users. The edge devices in this case are used only
as dedicated scanners that receive the beacons’ advertising
packets. For every reception they report to a centralized server
information regarding the identity of the beacon, the time of
packet reception and its RSSI value accompanied with the
scanner’s ID. The server-scanner communication is achieved
via the MQTT protocol [15]. The system’s architecture is
shown in Fig. 2.

The majority of edge devices was installed on the first
floor of the facility and their positions were dictated by
the presence of power outlets. Fig. 3 shows their positions
along with their cell clusterization. Our deployment utilizes
a Geofencing strategy to define localization [16]. Each edge
device is considered a Point of Interest (PoI) and defines a
virtual barrier around it, where our system tracks incoming
and outgoing users. In our case, the geofence radius for each
scanner was chosen to be seven meters to avoid overlapping
areas, while for the same reason, closely installed edge devices
form unified cells as shown in Fig. 3.

In order to visualize the relationship between the RSSI val-
ues and the user-scanner distances we collected and averaged
30 RSSI samples at a number of distances starting from 0
meters up to 10 meters. For this experiment the edge device
was mounted on a wall at the height of 1.6 meters and the
results are shown in Fig. 4. The fitted curve is based on the
log-distance path loss model:

RSSI = −10 γ log10(
d

d0
) + C (1)

where γ represents the path loss exponent of the propagation
channel, d is the user-scanner distance, d0 is the reference
distance and C represents the average value of RSSI at d0

Finally, the installation was used to host a IRB-approved
real-subject trial at the spaces of NC State University’s Cen-
tennial Campus - Engineering Building II. The trial lasted for
33 days while 46 students participated by carrying with them
an iBeacon device at all times.
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Fig. 4. Curve fitting for RSSI values at distances from 0 to 10 meters
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Fig. 5. User cell transition

V. USER CELL OCCUPANCY & TRANSITIONS

Using the fixed edge devices to partition the facility spaces,
proximity estimation methods can be utilised to place an indi-
vidual occupant to a distinct cell. The continuous string of this
user’s transmitted packets provide information regarding the
identity of the scanner in his vicinity and when the broadcast
happened along with its RSSI. Since after a transmission burst
multiple edge-devices will receive the signals, a comparing
method can be used to select the cell where the user will
be classified to. Using the stronger RSSI value is one of
the solutions. However, we should also consider the optimal
refresh period of the decision since the collection of multiple
RSSI values can enable us to use RSSI smoothing filters for
increased accuracy. The area covered by each scanner can be
determined by simple signal propagation models that relate
RSSI with distance such as Equation 1. This parameter is also
tunable by considering signal strengths over a limit, reducing
that way the range an advertisement packet can travel.

In order to determine the applicability of this method in
locations near the cell limit we performed a series of static
experiments. The classification criterion that assigns the static
user to a cell is the ”naive” strongest RSSI approach. The
user is periodically assigned to the cell that receives the
advertisement message with the strongest RSSI. The decision
period was investigated in these tests with Fig. 6 showing the
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Fig. 6. Accuracy of near-edge cell occupancy - Tests average
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Fig. 7. Generated traffic per trial day

average accuracy while the period duration ranges from 2 to
25 seconds.

By assigning the occupant to a specific and unique cell
for each refresh time slot, the system will be able to track
movements inside the facility as depicted in Fig. 5. It is
however obvious from Fig. 6 that while higher periods yield
eventually accurate results, they are not able to detect rapid
user movements and therefore fast cell transitions. Therefore,
we have to additionally investigate the optimal decision pe-
riod to also accommodate this functionality. Over time, such
data can generate useful motion patterns between cells and
locations along with user-centric preferences and habits.

VI. CLOUD ASSISTANCE

Depending on the beacon advertising period, the proposed
system is able to yield a significant amount of facility to Cloud
traffic, especially if the facility size and user numbers are
of large scale. Therefore, a Cloud federation is imperative
to provide real-time services to each individual and at the
same time collect the data loads for further processing. Fig. 7
shows total daily messages received by the server from all the
installed edge devices during our trial.

Regarding off-line processing, the gathered data can be
used not only to produce mobility patterns for each occupant,
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Fig. 8. Average weekday activity per hour

but also enable features that pertain to facility management
analytics produced directly on the Cloud. Monitoring user
activity per location or per hour are cases in point. Fig. 8 shows
the average and standard deviation of total facility activity per
hour during weekdays as resulted from our 1-month trial. Fig.
9 shows the average and standard deviation of first floor cell
activity during weekdays. As activity metric we used the total
amount of edge-to-Cloud messages produced by each cell.

VII. CONCLUSION

In this paper we present a moving transmitter-fixed scanner
architecture for future location aware facilities. The system
was deployed in real-word conditions and was evaluated with
independent experiments and a real-subject, one-month trial.
Also, we highlighted the applicability of the architecture to
facilitate user occupancy and mobility monitoring. Finally, we
discuss the Cloud-centered opportunities that can be exploited
by the amount of data generated by our IoT-enabled model.
The results reveal a reliable solution for future smart facil-
ities where occupant tracking is a necessity. This work is a
basis to future develop our solution by optimizing functional
parameters and adding extra Cloud-based services.
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