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Abstract—The addition of occupant tracking -using location-
based services (LBSs)- as standard functionality in next genera-
tion facilities can provide advanced personalized accommodations
for the users and also assist in optimizing energy consumption,
automation and safety operations. In this work, we present and
experimentally evaluate a Bluetooth-based system for location-
aware facilities. Our model follows a moving-transmitter fixed-
scanner approach that exploits an edge-focused Internet of
Things (IoT) architecture and results in a low-cost, scalable
solution with centralized coordination. The focus is on presenting
the benefits of such approach and quantify its performance and
accuracy in tracking facility users. Specifically, our deployment’s
performance was experimentally measured and yielded up to
94% average accuracy in detecting user occupancy for decision
intervals of 25 seconds.

I. INTRODUCTION

Living essentially in the heart of the Internet of Things
(IoT) revolution, this swarm of continuously interconnected
and sensor-packed devices open a vast number of opportu-
nities in equipping existing infrastructures. IoT has enabled
applications that transform facilities to intelligent spaces able
to critically affect and improve productivity and life quality of
the occupants. Reducing energy costs, detecting and building
knowledge based on human patterns as well as improving the
human-building interaction are only some cases in point.

In this context, indoor-focused location-based services
(LBSs) are becoming more and more important as a key
feature for such next generation smart facilities. This type of
services that provide the ability to efficiently track occupants
in real-time are realized either by attempting to estimate the
users 2D coordinates, which is referred to as micro-location
[1], or by attempting to assign the user in the locality of certain
points of interest (PoI), known as proximity sensing [2].

To facilitate these LBSs, a number of technologies and
approaches has been proposed over the years. These im-
plementations are in their majority RF-based and include
the use of WiFi [3], Radio Frequency Identification Device
(RFID) systems [4] and recently Bluetooth Low Energy (BLE)
implementations [2], [5], [6]. However, (a) the unpredictability
of signal propagation due to the variable physical indoor
environment, (b) the fact that these technologies were not
primarily intended for PBS, and (c) the often complicated
data-collection and decision-taking system behind them, make

the accurate and practical indoor localization problem still an
ongoing research topic [1].

In this paper, we present an edge-to-cloud system able to
equip future location-aware facilities where occupant tracking
is desirable. Our solution is utilizing BLE technology and
follows a moving-transmitter fixed-scanner approach inverting
the usual logic used in similar indoor localization applications
[2], [5], [7], [6]. We describe the deployment in detail and ex-
perimentally evaluate its accuracy in detecting user occupancy
as well as user mobility inside the facility. The user-centric
data that our system produces, combined with signal process-
ing and machine learning methods, can be used for a variety
of functions associated with smart buildings. Namely, such
operations range from calculating visitor behavior patterns to
ensuring the facility’s energy efficiency or safety.

This work is organized as follows: In Section II, we discuss
existing work while in Section III, we describe our proposed
system’s architecture and operation. We present the experi-
mental setup and the associated results in Section IV. Finally,
we conclude this paper and discuss future work in Section V.

II. BACKGROUND WORK

A. BLE Enabling Smart Spaces

Bluetooth Low Energy is a communication protocol devel-
oped for short-range wireless communications with energy
efficiency being the main focus. The protocol utilizes two
different types of messages that are distinguished by using
different broadcast channels. Data messages require a con-
nection between master and slave for transmission, but adver-
tisement messages do not. The latter are broadcast messages
used primarily for discovering devices. However, with simple
modifications these advertisement messages can be used to
carry a payload able to communicate essential information
such as sensor data or other notifications. BLE beacons utilize
this messaging feature to send short messages at flexible
refresh rates. Such advertisement packets can be received by
other BLE-enabled devices and can be utilized for localization
purposes by exploiting signal strength measurements.

Since both BLE and WiFi operate on the same frequency
bands they are often compared as IoT solutions for localization
in smart buildings [7]. Clearly, the WiFi solution has the
advantage of utilizing preexisting infrastructure and providing
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Fig. 1. Proposed system’s architecture and operation

sufficient indoor space coverage. However, BLE equipment is
extremely inexpensive. This fact along with the promise of
low maintenance requirements, makes the extra infrastructure
investment a negligible cost. Moreover, as WiFi was designed
primarily for data transmission and not for localization pur-
poses, it presents insensitivity in protocol parametric changes.
For instance, the ability of BLE beacons to easily adjust
their transmission rate is an important advantage over WiFi-
based beacons. Finally, the low overhead of the BLE beacon
packets allow deployment at scale and demand minimal power
requirements, leading to small-factor, practical devices.

Taking into account features offered by BLE technology,
the value of full scale deployment in IoT-equipped smart
buildings becomes clear. Bluetooth beaconing can broadcast
occupant-centric data inside a facility and provide insight on
how visitors are using the smart spaces. These data can be
used to optimize building operations, correlate occupant data
to building systems, and tackle energy consumption issues.

B. Localization with BLE
Several existing works utilize BLE-beacons for indoor lo-

calization purposes. Zhao et. al. [7] use static beacon anchors
to utilize trilateration techniques and propose propagation
models for location estimation in various conditions including
indoor/outdoor environments with line-of-sight (LoS) or non-
line-of-sight (NLoS) situations. Another method is location
fingerprinting, which is a technique that uses reference lo-
cations to construct an RSSI measurements map during a
training phase before actual location tracking is carried out.
During actual location tracking, a signal strength comparison
is performed between incoming RSSI values and the previ-
ously assembled RSSI measurement map. Faragher et. al. [5]
provides a study on a fingerprinting system based on static
BLE beacons.

Apart from that, other works use techniques in order to
improve beacon-based localization. Anagnostopoulos et. al. [8]
use a beacon position weighted average method combined with
a ”nearest-beacon” approach while Chandel et. al. [9] propose
an end-to-end system that utilizes floor maps, particle filter
based IMU tracking, and static BLE-beacons. In [2], Zafari
et. al. propose, among others, a Kalman-based algorithm that

reduces the BLE RSSI values’ fluctuation aiming to improve
proximity detection. Regarding inertia sensors and BLE col-
laboration, Chen et. al. [10] use an IMU-based Pedestrian
Dead Reckoning (PDR) approach where RSSI values from
fixed BLE-beacons are used to calibrate the system frequently.

As seen above, the dominant approach in most relevant
works is using BLE-beacons as static transmitters that mark
certain areas. However, the inverse strategy is also encoun-
tered for case-specific applications. Komai et. al. [11] use a
movable-beacon fixed-scanner approach for an indoor local-
ization system that assists caretakers to track people in a day
care facility. Narzt et. al. [12] use a similar moving beacon
approach to implement a Be-In/Be-Out system for automatic
ticket checking in public transportation.

In the same fashion, in [13] we describe the large-scale
deployment of the moving-beacon system we will describe in
this work. We realized a three-floor installation that is followed
by an IRB-approved large scale trial with real participants
and in an everyday-use environment. Over 30 fixed-scanners
were deployed, continuously collecting real data from 46
participants during an experiment that lasted for over one
month. This real-subject trial provides proof of the design’s
maturity to be practically realized as an IoT localization
solution. Therefore the results of the present work are of
significance as they provide confidence bounds of our system’s
performance and give insight for further improvements in
future versions.

III. ARCHITECTURE & OPERATION

In this work, we propose the use of BLE beacons not
as static location indicators but rather as occupant indicators
provided beforehand to visitors and continuously broadcasting
advertisement packets on the move. In this scenario, the
facility’s sensing infrastructure consists of a set of edge
devices that continuously scan their covering radius for a
user’s advertisement broadcasts. At the next level of this IoT-
inspired architecture, the edge devices are forwarding infor-
mation packets through the facilitys networking infrastructure
to a remote server or a federated Cloud level that allows
centralized, but scalable coordination. Figure 1 depicts our
system in detail.
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Fig. 3. Curve fitting for RSSI values at distances from 0 to 10 meters

As far as the realization of our system is concerned, we used
Gimbal Series 10 iBeacons [14] that broadcast advertisement
packets every second with 0dBM transmission power and in
an omnidirectional setting. On the receiving end of the BLE
beaconing, we utilized Raspberry Pi devices as edge nodes
that continuously collect the broadcasted packets. Following
that, they act as MQTT [15] clients forwarding RSSI Report
packets in the form of Fig. 1 to a remote server. These scanning
devices are essentially the backbone of our system since our
deployment utilizes a Geofencing approach to define occu-
pancy in the smart space [16]. Each edge node is considered a
Point of Interest (PoI) and defines a virtual circular barrier of
the same radius around it, where our system tracks incoming
and outgoing users (Fig. 2).

At the remote server side, an MQTT broker is hosted to
collect the edge structure’s messages along with a monitoring
application and storage for the user-centric information. This
continuous string of a user’s transmitted packets provide infor-
mation regarding the reception date/time, RSSI, and identity of
the scanner in his vicinity. Therefore, a proximity estimation
method can be utilized to facilitate occupant tracking inside
the smart facility.

Since after a transmission burst, multiple edge devices will
receive the signals, a comparing method should be used to
select the node where the user will be classified to. We will be
using the ”naive” classification approach of the stronger RSSI
value where the system periodically assigns the user to the
node that received the message with the greater RSSI. Given
that, we should also consider the optimal refresh period of
the central localization decision for every user. This second
criterion is experimentally investigated in the next section
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Fig. 4. Accuracy of near-edge cell occupancy - Tests average

along with the overall performance of our deployment.

IV. EXPERIMENTAL SETUP & RESULTS

In order to test our system, we carried out a large scale
installation of Raspberry Pi-based edge devices (Fig. 2) fol-
lowed by a series of performance experiments. Their positions
were dictated by the presence of power outlets. For each node
we chose a virtual ideal covering radius of seven meters. The
radius was chosen to ensure area overlapping avoidance and by
taking into account the relationship between the RSSI values
and the user-scanner distances as shown in Fig. 3.

For this propagation model extraction we collected and
averaged 30 RSSI samples at a number of distances starting
from 0 meters up to 10 meters while the edge device was
mounted on a wall at the height of 1.6 meters. The fitted curve
is based on the log-distance path loss model:

RSSI = −10 γ log10(
d

d0
) + C (1)

where γ represents the path loss exponent of the propagation
channel, d is the user-scanner distance, d0 is the reference
distance and C represents the average value of RSSI at d0.

Finally, closely installed edge devices were clustered into
unified cells forming the final test topology shown in Fig. 2.

A. Cell Occupancy Experiments

To determine the applicability of our method in locations
near the cell limit we performed a series of static experiments.
A user equipped with an active BLE beacon was positioned
at a seven meter distance from an edge device, as he was
periodically assigned to the cell that receives the advertise-
ment message with the strongest RSSI. The cell classification
accuracy is defined as:

Accuracy (%) =
Correct Cell Assignments

Total Cell Assignments
× 100 (2)

The number of assignments is variable and depends on the
decision period which is a value also investigated in these tests
with Fig. 4 showing the average accuracy while the decision
rate changes. Since our beacon transition rate is 1 Hz we are



TABLE I
CELL OCCUPANCY EXPERIMENTS

Accuracy [%]

Decision Period [sec] Test 1 Test 2 Test 3 Test 4 Tests Average
2 53.60 62.75 49.46 51.42 54.31

6 77.03 76.47 71.15 75.16 74.95

10 84.44 85.37 78.72 90.22 84.69

14 84.38 90.00 86.57 92.42 88.34

18 96.00 95.65 88.46 90.20 92.58

22 95.24 89.47 90.70 90.48 91.47

25 100.00 88.24 92.11 94.59 93.74

A

B

C

Fig. 5. User cell transition: A→ B → C ≡ ”ABC”

considering decision period duration from 2 to 25 seconds.
Table I shows in more detail the test results. As expected the
accuracy is increasing along with the increase of the decision
period. This is related with the BLE RSSI fluctuation observed
in beacon-related measurements and is confronted either by
increasing sampling periods (like this work) or with filtering
efforts as reported in [2].

B. Cell Transition Experiments

By assigning the occupant to a specific and unique cell for
each refresh time slot, our system is able to track movements
inside the facility as depicted in Fig. 5. In order to test this
tracking ability we performed a series of focused experiments
where users moved on a walking pace, from a point A to a
point B, crossing several cells in the process.

In order to evaluate the accuracy of the computed paths, and
compare them with the actual paths followed, we are utilizing
a custom performance metric. Cell transitions, as denoted in
the description of Fig. 5, are expressed as path strings where
each new character indicates a cell change. To extract the
differences between the actual and estimated paths we compute
the Levenshtein Distance [17] also known as Minimum Edit
Distance [18] between the two strings. A zero Levenshtein
Distance Error value signifies total match of the two paths.

Fig. 6 shows the average cell transition error and the stan-
dard deviation as computed from seven unique experiments.
We use the central system’s decision refresh rate as a tuning
parameter to investigate the optimal value that accommodates
the transition detection functionality. As expected the sys-
tem’s accuracy is increasing alongside the decision period as
more RSSI samples are considered in each period. However,
extended decision intervals (>18 seconds) eventually fail to
detect the user movements and therefore fast cell transitions,
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Fig. 6. Average cell transition detection error - Tests average

causing an increased observed error. These two trends are
shown in Fig. 6 where using the experiment results we
computed two exponential fitted curves to extract the functions
of the expected error versus the decision refresh period.
Evidently, depending on the specific facility needs (visitor
mobility frequency), the decision period can be optimized to
provide the necessary per use-case accuracy.

V. CONCLUSION & FUTURE WORK

In this paper, we described a top to bottom location-aware
infrastructure able to provide location-based services through
geofencing and proximity sensing. Our realization of this
system was based on the BLE protocol following an edge-
device based architecture where users are equipped with active
beacons to denote their location in the smart space. The
cloud-inspired central system divides the facility into non-
overlapping cells and uses them to identify user occupancy
and mobility.

The deployment’s performance was experimentally evalu-
ated and yielded up to 94% average accuracy in detecting
user occupancy for decision intervals of 25 seconds. Regarding
occupant mobility tracking, experiments yielded also accurate
results that depend on the system’s decision period as shown in
Fig. 6. In general, the results prove our system to be a reliable
solution for future smart facilities. Finally, this location-aware
infrastructure model is highly scalable and will be able to
accommodate occupants in high volumes.

As future steps, we consider working on improving the
system’s accuracy by utilizing edge-computing methods on the
IoT nodes that equip our smart facility. An increased beacon
transition rate in collaboration with RSSI smoothing methods
[2] implemented on the edge (before forwarding measurements
to the cloud) can further improve the accuracy and the same
time reduce the localization latency that is very important for
real-time applications.
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